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Abstract

This report concerns the prediction of the elastic moduli and the internal stresses within the

unit cell of a fabric reinforced composite. In the proposed analysis no restrictions or assumptions

are necessary concerning yam or tow cross-sectional shapes or paths through the unit cell but the

unit cell itself must be a fight hexagonal parallelcpiped. All the unit cell dimensions are assumed

to be small with respect to the thickness of the composite structure that it models..

The Irmite element analysis of a unit cell is usually complicated by the mesh generation

problems and the non-standard, adjacent-cell, boundary conditions. This analysis avoids these

problems through the use of preprogrammed boundary conditions and replacement materials (or

elements). With replacement elements it is not necessary to match all the constituent material

interfaces with finite element boundaries. Simple brick-shaped elements can be used to model the

unit cell structure. The analysis predicts the elastic constants and the average stresses within each

constituent material of each brick element. The application and results of this analysis are

demonstrated through several example problems which include a number of composite

microstructures.
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I. Introduction

A unitcellof fabricreinforcedcomposite isany small,closed,polygonal volume of

inhomogeneous material(oftenbrickshaped)which,when reproduced and similarlyaligned,can

be stacked,(sideby side,top tobottom, and end toend) and joinedtogether(asinsolidbrick

construction)to approximate a varietyof simplestructuralcomponents whose minimum external

dimensions aremuch largerthanany unitcelldimension. Furthermore,itisdesiredthatthe

thermo-mechanical responseof thecomponent and theunitcellassembly be similar.A varietyof

differentunitcellsand analyseshave successfullypredictedfabricreinforcedcomposite moduli

(Ref.l)and averagethermalproperties(Ref.2) but theresolutionof thedetailedinternalstress

distributionwithin aunitcellhas been more difficult.

The abilitytoresolvethestresseswithinthe unitcellof a fabricreinforcedcomposite has

atleastthreeareasof applicability.Problems of crackgrowth withinthemicrostructurearethe

most challengingof thethree.The capacitytoresolvethestressdetailsmust be very high inthis

application.Another levelofusefulnessisthepredictionoftheinitiationand propagationof

yieldingor plasticflow (usuallyinthematrixphase)withinthemicrostructure.This stillrequires

a detailedknowledge oftheinternalstressesbut itisnot necessaryto superimpose crack induced

stresseson top of an alreadycomplicatedstressfield.A third,and much lessdemanding, levelof

usefulnessisinmaterialrankingand tradeoffstudies.This levelof engineeringratesthe

likelihoodof differentfabricmicrostructurestoPerform satisfactorilyinspecificapplications.

Here theperformance criteriacan be quitesimpleand thedemand forstressaccuracy and detail

can be significantlylessthan inthetwo priorapplications.The largenumber of materialand

microstructuralparametersavailabletothedesigner(orselector)of a fabricreinforcedcomposite,

coupled with theexpense of expcrimentaUy characterizingthesematerials,makes initialscreening

by mechanical analysismore attractive.Itwas thisapplicationthatwas of most concern inthe

development of thisanalysismethod. Numerical accuracywas clearlysacrificedtoreduce

modeling complexity ina manner consistentwith materialscreeningand comparison study

requirements.

The three-dimensionalstresseswithina unitccU of a fabricreinforcedcomposite can be

predictedby theapplicationofa generalpurpose finiteelementcode. However, theassociated

boundary conditionson theunitcellsurfaceand themesh generationproblems can be difficult.

The program describedinthisreportavoidsthesedifficultiesthrough theuse ofpreprogrammed

boundary conditionsand replacementelements.With replacementelements itisnot necessaryto

match all theinternalmaterialinterfaceswith finiteelementboundaries.Thus, simple,uniform,

parallelcpipcdelementscan be appliedtoa unitcellstructurewhose boundaries arethemselves a



parallelepiped. Most of the common reinforcing microgeometries can be modeled with this shape

of unit cell. The analysis predicts both the stresses (and strains) within each homogeneous

element, and the average stress (and strain) within each dissimilar material contained in each

replacement element. Conventional yield or failure criteria can then be applied to each material in

each element, as in conventional stress analysis.

The proposed analysis places no restrictions on fabric microgeometry within the unit cell

except that the fibers all be continuous, the fiber packing within any tow remain relatively

constant, and the microgcometry be deterministic.

The key to the usefulness of this analysis is the performance of the replacement elements.

This performance will be investigated for several sample problems of increasing complexity.

These sample problems also help to explain the analysis and its application. The discussion begins

with a simple one-dimensional tension bar problem. At this level the analysis seems almost trivial.

The extension to two and three-dimensional problems is not trivial. In some of the sample

problems the exact solution for the internal stresses is known. The plain weave unit cell is the most

complex of the sample problems. For comparison, another numerical solution to this problem is

available from an earlier study.

The two and three-dimensional problems require a computer analysis. The final version

of this numerical analysis, as it evolved from a sequence of programs directed at each sample

problem, is a Fortran program written for the Sun Spark station 1+. AU of the equations and

derivations for the two and three-dimensional analyses, along with the program listing and

input/output descriptions, appear in the Appendices.

This analysis method and the related Fortran program, REPLACE, are considered to be an

update of the earlier analysis program, FABNEW, which was developed about four years ago

(Ref. 1). However, the earlier program has a thermal expansion prediction capability that could

not be incorporated into REPLACE due to time and schedule limitations.



II. One Dimensional Analysis

In this section, the application and characteristics of replacement finite elements will be

introduced at the simplest level, namely one-dimensional elastic analysis. Through the example of

a tension bar, the convergence of various finite element models for the elastic deformations will be

investigated and compmed to the known solution. The proposed replacement element analysis is

also capable of predicting average stresses in each constituent mate_al within each element. The

accuracy of these _ predictions are considered. There is no direct computational auivantage to

the use of replacement elements to model such a simple problem but it is instructive to initially

consider the use of these elements at this elementary level.

Sample Problem #1

Consider the tension bar of Figure I in which the left hand half is made from a

homogeneous isotmpic material with modulus E and cross-sectional area A. The other half has

the same cross-sectional area but the material is five times stiffer. From elementry considerations

the total elongation of the bar (_) is given by the sum of the elongations of the two halve.

= -I5AE = AE

where P is the axial load and L the total length of the bar. The axial stress ((3") and strain (E) in

each material are given by

P
O'L = a R .._ -_--

P
= 5 ER =

where subscripts a. L designate right and left.

The same results could also have been obtained using finite element analysis as long as one

of the finite element nodes coincided with the material discontinuity. In that case all of the

elements would be homogeneous and their stiffness ma_ces precise, as long as the assumed

displacement mode shapes included a constant and a linear term. The stiffness matrix [1{] relevant

to the axial forces and displacements at the end points of the bar is given by

5AE [ I -I]Ck3 = 3--"L- -I I



If the material discontinuity does not coincide with a node point then one element will be

inhomogeneous, as shown in Figure 1, and the finite element solution will be an approximate one,

as long as the asstuned displacements are simple polynomials. The accuracy and convergence

depends on the choice of mode shapes. For example, consider a linearly veh-ying displacement

within each element and an internal node placement at the 1/3 and 2/3 points along the bar length,

as shown in Figure 1. Each subsequent refinement of the f'mite element grid divides each prior

element into three equal segments. The middle element of the model will always be

inhomogeneous as the element size decreases. The stiffness matrices for the homogeneous elements

are given by

where 1is element length.

The stiffness matrix for the single inhomogeneous element could be obtained from the

general energy formula (Ref. 3)
t.

VOL 0

where B is the strain/displacement matrix and dx (dv) is an increment of length (volume) along the

bar. D is the local material stress/strain relation. Supercript T designates transpose of a matrix.

The resulting inhomogeneous bar stiffness matrix is given by

! I

Figure 2 is a plot of the error in the bar elongation prediction as element size diminishes. The

predicted end displacement approaches the known solution monitonically as the influence of the

single inhomogeneous element error diminishes with element length. However, the error in the

average strain of the center element persists at a high level (80%). This error can be reduced by

resorting to higher order elements; but there is no accepted method for obtaining either the average

or the detailed strains or stresses in the constituent materials within the inhomogeneous element.



Now consider a different approach to the same problem. Instead of applying the energy

formula for the stiffness matrix, replace the inhomogeneous material with a fictitious homogeneous

material that matches the axial response of the inhomogeneous materials. The center element is

obviously a case of'stiffness in series', for which an equivalent modulus (E) can be obtained from

the rule of mixtures for stiffnesses in series (Ref. 4):

FZ = EL ER

VLER + VREI.

where V i stands for fractional length of the i th segment of the element. For the particular

example at hand where E = EL - ER/5 and VL= Vs - 0.5

If this equivalent modulus is used for the center element the exact solution results. What is better,

the "stiffness in series" model can be used to compute the average and local stresses and strains in

the various materials of the inhomogeneous element from the nodal displacement solution. In

particular, from Figure 1,

P P
°L= °R - A --d : s = A--C"

which is the correct result.

This process of substituting equivalent homogeneous elements in place of inhomogeneous

ones is termed the "replacement element" method.

Of course, if the "element in series" results were known, a priori, there would have been no

need to resort to a finite element solution. However, in more complicated two and three-

dimensional problems, knowing the local solutions for series and parallel stiffness models is not

equivalent to solving a global problem that involves their use in place of inhomogeneous elements.

For example, if the tension bar of Figure I were part of a redundant truss problem a truss analysis

would still be required.

The error inherent in the use of the general energy formula, in combination with a low

order displacement mode shape assumption, arises from the formula's inability to distinguish

between series and parallel stiffnesses. For one-dimensional problems, with linear displacement

assumptions, the energy formula presumes a "stiffnesses in parallel" situation, whether that is the

case or not. The introduction of higher order displacement modes permit the general energy

formula to make the necessary distinction. However, for polynomial mode shapes and



discontinuousmaterialproperties,theconvergencerateimprovementsareslowanddetailedstress

and strain determination problems remain.



III. Two Dimensional Analysis

This section applies the concept of substituting replacement homogeneous elements

in place of inhomogeneous ones at the generalized plane strain level of two-dimensional

analysis. As in the one-dimensional case, the approach is first illustrated through a specific

example for which the exact solution is easily obtained.

There are several different notions that should be introduced in the transition from

one to two dimensions. The first is the unit cell concept. Much of the earlier work (Ref. 5)

on the resolution of detailed stress fields in unidirectional materials (and laminates built up

from unidirectional plies) used this type of idealization to make a large random

mierogeometry amenable to deterministic analysis. The unit cell approach looks for the

simplest essential volume of composite microstructure from an analysis viewpoint. In

two-dimensional analysis this selection is usually easy. Ref. 5 considered some convenient

unit cells for square and hexagonally packed unidirectional composites. Each of the three

sample problems in this section will begin by defining one or more unit cells for subsequent

analysis. There are an infinite number of possible unit cells for a typical composite

microstrueture so the final choice is often somewhat personalized. The smallest unit cell is

not always the most convenient one if the boundaries are non-rectangular.

Another basic difference between one and two-dimensional problems is the

mathematical nature of the replacement element idealization. In one dimension the material

interfaces are discrete points. Continuity of normal stress and the geometric relationship

between average element normal strain and average constituent normal strains are the only

relevant concerns. In two-dimensional analysis the constituent material interfaces are

assumed to be linear (or planar) with several local stress and strain components of concern.

The physical nature of the replacement element process also changes from series

and parallel bar or rod models to parallel plate models. The use of the general energy

formula from Eq. 1 (as applied to a two-dimensional finite element) in combination with

low order displacement mode shapes lead to the tacit assumption that each constituent

material is arranged in a stacking of thin plates parallel to the plane of the analysis. The

dissimilar material plates have their thicknesses in proportion to their respective volume

fractions in the element. In reality, the constituent material interfaces are not parallel to the

analysis plane but normal to it. The replacement element process corrects this

inconsistency by rotating the same stacking of plates 90 ° about the material interface such

that the final set of interfacial planes, between the parallel plates, preserves the original

angle of the interface in the plane of the analysis. This procedure can only be applied to

two constituent materials at a time whose interface is a single straight line in the



plane of the analysis. Thus, while the energy formula preserves only the constituent material

volume fraction, the replacement element process preserves both the constituent volume fraction

and the direction of the interface. Only the order or sequence of constituent material positioning

across an interface is lost in the idealization. This process is best understood by considering the

specific examples that follow.

Sample Problem #2

Figure 3 shows a laminated composite consisting of parallel bonded sheets of two

different homogeneous isotropic materials. On a gross scale this assemblage of plates may be

considered to be a composite material with a plane of isotropy parallel to the material interfaces.

The principal axes of the composite are any pair of axes in the plane of isotropy with a third axis

normal to that plane. In the principal axes, or natural coordinates of the composite, the elastic

constants can be established from the application of elementry mechanics principals to the unit cell

structure. Also, the same elementry model can be used to obtain the equations for the internal

stresses in each contitutent material corresponding to any remotely applied state of uniform

composite stress or strain. The elastic constants and the detailed stresses and suahs can then be

transformed into any global reference system: in particular, the one shown in Figure 3 where one of

the natural coordinates correspond to the z-axis of the global reference system.

The isotropic properties of the two sets of parallel plates can be chosen to match the

properties of aluminum and epoxy from Table 1. The volume fractions of both constituents are

0.5. From elcmentry mechanics considerations the elastic constants of the composite, in the

principal axes, can be obtained as follows. Consider the unit cell of Fig. 3 in the 1,2,3 coordinate

system. From equilibrium and resolution,, of forces the average composite stresses (O'i _T i j ) are

related to the constituent stresses (O'i _, T: k ) by
|J

0"I -" o'IAIVAI+O'IEPVEp

= ip
= +o- p
=

where v i designates volume fraction of the i th constituent and EP and AL designate epoxy and

aluminum respectively. The corresponding strains ( E i, _ii, E _, 'Ti_ ) are related by
geometry and comparability as follows



3 ,_ AI _ _: Ep=E3 - =3

•_v AI ii _ "V EP
?12 /12 YAI _'/Iz VEp .

These 12 equations plus the individual stress/strain laws for the two constituent materials form a

system of 20 equations that can be solved for the composite stress/strain relation and the individual

constituent stresses and strains corresponding to any applied composite stresses or strains (see

Appendix A). From the composite stress/strain relations the composite elastic constants are

E 1 = E 3 - 5.25 x 106 psi

E2 = 1.39 x 106 psi

GI2 = 0.354 x 106 psi

v12 = v32 _" 0.325

v]3 = 0.255

From these principal values the engineering constants in another coordinate system, obtained by a

rotation about the 3-axis of Figure 3, can be calculated from the appropriate 2-D transformation

equations (given in Appendix B). In particular, for a rotation of 45 ° about the 3-axis of Figure 3

the elastic constant are

Ex=Ey= 1.11 x 106 psi

Ez _ 5.25 x 106 psi

Gxy _ 0.968 x 106 psi

Vxy - 0.566

Vxz-- Vyz = 0.067

1]xy,x ffiTlxy,y ffi-0.296

Tlxy,z ffi 0.034



Foranaveragecompositetensilestressof onepsi in thex-direction(with all the other

average stress components equal to zero) the stresses in the constituent materials are given by

Oz

'l;xy

Aluminum Epoxy

1.103

0.103

-0.251

0.103

0.897

-0.103

0.251

-0.103

These stress and moduli predictions from elementry analysis are exact because they can be shown

to satisfy all the local and global conditions of equilibrium and compatibility.

As in the one-dimensional example, these results can also be obtained by conventional

finite element analysis using various types of elements and grids. The unit cell can be analyzed in

the principal coordinates of the material, as shown in Figure 4, using rectangular or constant

strain triangular elements without violating element material homogeniety. The applied unit stress

in the x-direction can be resolved into its components in the 1,2,3 coordinates of Figure 4 by either

a Mohr's circle or the use of the stress transformation equations of Appendix B. The resulting

composite moduli and constituent stress predictions can then be transformed back into the global

x,y,z coordinate system. These results agree precisely with the results of the elementry analysis.

Alternatively, using the unit cell and grid of Figure 5A, with constant strain triangular

elements, the exact results can be obtained from homogeneous elements without the necessity of

transforming the input and output from one coordinate system to another.

It is interesting to also consider the application of inhomogeneous finite elements to the

analysis of the same unit cell. Figure 5B shows this unit cell of the composite and one possible

subdivision of the unit cell into rectangular elements. Some of the elements are homogeneous and

some inhomogeneous. Using 4-node, isoparametric, brick elements (Ref 3); generalized plane

strain analysis; the 25-node finite element grid shown in Figure 5B; and the general energy

formula (Eq. 1) for the stiffness matrix of the inhomogeneous elements, the analysis

overestimates the x and y moduli by almost 100%. Reirmement of the grid leads to the moduli

lo



estimates of Figure 6. The convergence is slow. Furthermore, tiaras is no effective method of

obtaining constituent material stresses within the inhomogeneous elements.

Now consider replacing the inhomogeneous elements in this example problem with

replacement elements. To make this substitution in two dimensions first consider a subelanent of

the inhomogeneous material, shown in Figure 7. The sides of this subelement are either parallel or

normal to the material boundary plane. The volume fractions of the two materials are the same in

the subelement as in the element that contains it. Assume that the replacement homogeneous

material for the subelement and the whole element are the same. The derivation of Aplg'ndix A

then can be applied to establish both the replacement homogeneous material moduli and the

average constituent material stresses, once the average element strains are established. The physical

nature of the homogeneous-inhomeogeneous replacement pro_ is now evident. The

inhomogeneous element of Figure 7 is replaced by a homogeneous composite element consisting of

parallel plates bonded together in the same volume fraction as the inhomogeneous element and

having the same orientation of the material interfaces. With the 25-node finite element grid the

substitution is of the nature shown in Figure 8. For simplicity let the rectangular element

stiffness matrix be made up of the sum of two constant strain triangular elements. O'bere is no

need for higher order elements in this example.) The s/erie replacement material substitution is

done for both of the constant strain triangles that make up the rectangular element. The stress

predictions for the constituent materials in the rectangular element are the average values from the

two triangles.

The results from the 25-node finite element analysis are not the same as the exact solution

for either the moduli or the constituent stresses. The Young's modulus in the loading direction is

3 !% high as a result of the use of the replacement elements. This is a considerable improvement

over the 100% error using the same finite element grid with the general energy formula for element

stiffness. This error diminishes to less than 14% if the rectangular grid is changed from 4x4 to 8x8

as shown in Figure 9. Since the replacement element analysis also provides constituent stresses it

is of interest to compare the stresses in the 4x4 replacement elements to the known results. The

following table makes this comparison.

_x(psi)
O.y(psi)
_z(psi)
1 xy(psi)

Aluminum
Replacement

Element

0.906
0.168

-0.264
0.155

phase

Exact Result

1.103
0.103

-0.251
0.103

Epoxy Phase
Replacement

Element

0.677
-0.081

0.189
-.075

Exact Result

0.898
-0.103
0.251

-0.103

ll



The peak stresses from the replacement elements are about 20% lower than the exact values.

Unfortunately, as in the one-dimensional case, these constituent stress errors do not diminish with

grid refinement. These errors must be reduced by the use of improved elements. The stresses in the

homogeneous elements away from the replacement elements do converge rapidly to the exact

results with increasing grid refmement.

As was true in the tension bar example, the use of the general energy expression for the

inhomogeneous element stiffness matrix, in combination with low order displacement mode

shapes, favors an "elements in parallel" model of behavior rather than an "elements in series"

model as is sometimes more appropriate. Figure 10 illustrates this tendency of an inhomogeneous

plane stress element (by reference to a lattice or framework model). If the upper and lower halves

of the element, as shown in Figure 10A, were made of dissimilar isotropic materials then good

engineering judgment would dictate the lattice representation of Figure lOB, where lattice members

that cross the material boundary are modeled as "elements in series" while those that do not cross

the material boundary are simply homogeneous. The low order energy formula leads to a lattice

structure of the type shown in Figure 10C. If there is not much difference between the stiffness of

the constituent materials the two lattice models do not differ significantly. But if the constituents

are very different, elastically, then the two models differ widely.

Sample Problem #3

This sample problem involves the determination of the extensional moduli and fiber/matrix

stress concentrations fora unidirectional composite consisting of a square packed array of glass

fibers in an epoxy matrix. These stiffnesses and stress concentrations are well established from

several earlier micmmechanics investigations. It will be shown that finite element analysis based

on the substitution of orthotropic replacement elements for the inhomogeneous elements can yield

approximately the same results for both moduli predictions and stress analysis even though the

stresses within any constituent material in the unit cell model are not uniform.

The specific problem concerns a 50% fiber volume fraction of unidirectional E glass in an

epoxy matrix. Figure 11 shows the square packed array of fiber cross-sections and a single unit

cell of the composite. At most, only one quadrant of the unit cell needs to be analyzed due to

structural and load symmetry. The constituent material properties are given in Table 1.

The 5 x 5 rectangular finite element grid of Figure 12 is superposed on the fiber/matrix

geometry. The rectangular, generalized plane-strain, element stiffness matrices are formed from a

pair of constant strain triangular elements, using the same replacement material properties in each

I2



b'iangleof the rectangle. This leads to the material model of Figure 13 in which the plate thickness

and spacing within each originally inhomogeneous element reflects the true constituent volume

fractions and the approximate interfacial geometry (with the cylindrical interfacial surfaces

replaced by fiat planes).

Figure 14 contains contour plots of the stresses in the epoxy matrix due to a remote unit

average tensile stress normal to the fiber principal axis. The stress distributions in the glass fibers

are somewhat featureless. The stresses in the inhomogeneous elements were treated the same as the

homogeneous element stresses in preparing the contour plots. For comparison, the same

distribution of matrix stresses is also given in Figure 15 from Reference 5. The latter stresses

were established using a conventional finite element analysis in which all the elements were

homogeneous and isotropic. The stress distributions are essentially the same except for a slightly

higher replacement element stress concentration at the fiber/matrix interface along a line of closest

approach of adjacent fibers in the loading direction. This shows that the replacement scheme can

give accurate stresses when the stresses and strains within the constituent materials are nonuniform.

Furthermore, it is not necessary to resort to more refined grids in order to obtain comparable stress

predictions.

The transverse Young's modulus prediction from the replacement element solution was 1.8

million psi. This also compares favorably with other published values for the same square-packed

array of glass fibers. For example, Reference 4, lists a value of 1.7 million psi for a 50% fiber

volume fraction glass/epoxy with similar constituent properties using conventional finite element

analyses.

Sample Problem #4

This sample problem also represents a 2-D generalized plane-strain analysis in which the

constituent material stresses are not uniform. However, the geometry of the reinforcement phase

was chosen to resemble that of a wavy tow. This microgeometry has sometimes been chosen as

representative of woven fiber unit cell microgeometries (References 4,6 ). Figure 16 shows the

idealized composite structure and a unit cell of that structure. The reinforcing phase consists of

stacked layers of corrugated aluminum sheets separated by similar layers of epoxy. Perfect

bonding is assumed between the two phases. The dimensions of the microstructure are given in

Figure 17. The Young's modulus of the composite normal to the plane of Figure 16 can be

predicted adequately by the rule of mixtures for elements in parallel, but the Young's moduli in the

x or y- directions require a finite element analysis. This analysis will also consider the

deformations and stresses in the unit cell as a result of some average strain in the x-direction, with

13



all other average strain components held to zero. The constituent material properties are given in

Table 1. The volume fraction of the aluminum is 56%. From symmetry of the microstructure and

loading only half of the unit cell needs to be analyzed.

In order to have a basis of comparison for the approximate analyses a detailed finite

element analysis was performed on this microstru,__re using the NASTRAN code (Ref. 7) and the

two grids shown in Figure 18. The coarse grid contans 20 elements. The refined grid has 676

elements. All the elements were homogeneous isotropic CHEXA2 or CWEDGE elements. Three

independent unit strain cases were run in order to obtain average composite extensional properties

and the corresponding stresses and deformations. The average strain case {_ x = 1.0, E y = E z

= 7yz =_'_ xz _'_'_xy ffi0.0} gave the required internal deformations and stresses. The strain

cases {_z-l.O, Ex= _ yf_yz-_xzf_xyfO.O}and { _x= _ y- _ z-l.O

, "_ yz = _ xz" _ xy ffi0.0} gave sufficient information to establish the extensional

moduli. The last strain case was obtained by specifying that all average strains vanish and that

both constituent materials have a unit coefficient of thermal expansion while the unit cell is subject

to a one degree change in temperature. This was necessary to avoid the occurrence of constant

displacement terms in the multi-point constraint equations at nodes that were located on surfaces of

the unit cell where symmetry conditions did not apply (Ref. 7).

The generalized plane strain, extensional, elastic constants from the NASTRAN models are

Ex psi (x 106)

Ey psi (x 106)

Ez psi (x 106)

Pzx

Coarse Grid

3.55

1.48

5.81

0.25

0.32

0.20

Fine Grid

3.09

1.43

5.83

0.26

0.32

0.24

The results from the fine grid are used as the basis of comparison for this example problem.

Figures 19 and 20 contain plots of the unit cell surface normal deformations and internal stress

components for the E x _t 0 strain case. Many of the stress details of the f'me grid are not evident

in the coarse 20-element solution. Even with the ref'med grid it is not certain whether some of the

peak stresses have been accurately quantified. The large amount of periodic local bending and

shearing deformations in the reinforcing sheets are evident in the deformation plots. Large local

bending stress gradients through the aluminum sheets are also evident in the stress plots. In brief,

14



the task of characterizing the response of this microstructure is a more complex problem than the

previous example problem and represents a stiff test of the replacement element method.

Firstconsidertheinhomogeneous elementmodeling ofthismicrostructureusing the4 x 4

grid of Figure 21 and the general energy formulation for the inhomogeneous element stiffness

matrices. Using four-node, isoparametric, generalized plane strain elements, with the 16-element

grid the extensional moduli estimates are

E x - 4.90 x 106 psi

Ey - 3.12 x 106 psi

Ez- 5.84 x 106 psi

Except for Ez these estimates deviate significantly from the NASTRAN results. If the grid is"

refined from 4 x 4 to 8 x 8 as shown in Figure 21 the moduli values improve somewhat to

Ex = 3.95 x 106 psi

Ey = 2.32 x 106 psi

Ez ffi 5.88 x 106 psi

However, both the E x and Ey moduli estimates remain beyond the desired bounds of engineering

accuracy, and no internal stress data accompany these stiffness estimates. Both of these

shortcomings can be remedied by the use of replacement elements.

From the NASTRAN stress results it is obvious that the 4 x 4 grid will not give sufficient

detail to present any kind of comprehensive picture of the true stress distributions, no matter how

accurate the replacement element results may be. Thus the 10 x 10 grid of Figure 21 is applied to

the current problem with the same type of rectangular replacement element that was used in the

previous sample problem. With this grid 18% of the elements are inhomogeneous. The resulting

moduli estimates are

Ex = 3.21 x 106 psi

Ey = 1.62 x 106psi

Ez = 5.89 x 106 psi

These values compare favorably to the base line NASTRAN results. Figure 22 presents the stress

contours and unit cell surface normal deflections from the 10 x 10 replacement element analysis of

the E x _t 0 strain case. The approximations are remarkably consistent with, though slightly less

detailed than, the fine grid NASTRAN results in Figure 20. The approximations are a major

improvement in detail over the coarse NASTRAN stress results.
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IV. Three Dimensional Analysis

The previous sections and example problems have hopefully established the credibility of

the replacement element method at the one and two-dimensional analysis levels. This section

extends the method to the 3-D level. Figure 23 shows a parallelepiped element containing two

different constituent materials. The geometric configuration can be described by specifying the

volume fraction of one (or both) constituent and the direction of a normal to the interfacial plane.

The sequence in which the constituent materials appear, as an observer moves along the normal to

the interfacial plane, is irrelevant to the replacement element method. Figure 23 illustrates the

two sphericalanglesIS/,I[/2thatspecifythedirectionof thenormal totheinterracialplane.These

two directionanglesalsoserveto locatea setoflocalcoordinates(_,p,_)paralleland normal tothe

interracialplane.The _ and _ axes lieintheplane._ isnormal toit.The replacementelement

concept rearranges the two bulk constituents into a series of parallel plates with the plate surfaces

paralleling the original interfacial plane. Normal and tangential shear stress continuity is preserved

across the interface. Compatability of normal strain in the p and _-directions and shear strain in

the _ plane (of Figure 23) is maintained across the interfaces.

Constituent material properties arc treated more generally than in the 2-D case. Each

constituent is assumed to be orthotropic with a plane of isotropy normal to the principal

reinforcing direction. The principal reinforcing direction must be specified, by means of two

sphericalangles,_ I and _)2.These anglesarcreferencedand measured inthesame senseasthe

_/l and _/2 anglesof Figure23 with theinterfacialnormal directionreplacedby thegrain(or

fiber)directionof theconstituentmaterial.Usuallytheprincipalreinforcingdirectionwillparallel

theinterracialplanebut thisisnot assumed inthe analysis.

To form thestress/strainlaw forthereplacementelementa number of stressand strain

transformationsmust be carriedout. Each constituentmaterialhas itsstress/strainrelations

initiallyspecifiedinthenaturalcoordinatesof thematerial.Thcsc propertiesmust be transformed

intothex,y,zglobalcoordinatesfirstand thentransformedintotheR,y,zinterracialcoordinates.

The replacement analysisthenyieldsthereplacementmaterialstress/strainlaw intheR,_,_

coordinates.Finally,thesepropertiesaretransformedback intotheglobalx,y,zcoordinatesforuse

in constructingtheelement stiffncssmatrix. This sequcnce oftransformationsisretraced(afterthe

finiteelement analysisof theunitcellyieldsnode pointdcflcctionsand averageelement strainsin

theglobalcoordinates)inordertogetconstituentmaterialstressesinthenaturalcoordinatesof the

materials.Appendix C derivesthereplacementelementstress/strainequationsinthe interracial

coordinates.Appendix D givesthetransformationequations.
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The 3-D stress and strain transformations are accomplished by a pair of essentially 2-D

transformations. Each transformation accounts for each spherical angle of rotation that specifies

either the direction of the normal to the interfacial plane or the fiber direction.

Sample Problem #5

As in the I-D and 2-D case, the first 3-D sample problem is an elementry one for which a

solution is available. However, in this case the known solution is not exact. The problem concerns

the "3-D weave" or "XYZ" composite construction (see Figure 24) in which there are three

orthogonal fiber directions (Ref 8). The fibers remain essentially straight. The volume fraction of

fibers in each of the orthogonal directions usually vary to match the design requirements. The

types of fibers may also vary with direction. Figure 24 shows one unit cell of the composite

microsb'ucture. Symmetry considerations reduce the essential part of the unit cell that must be

analyzed to one eighth of the total unit cell volume. This reduced volume is shown in Figure 25. It

has a 25% volume fraction of interstitial bulk matrix, a 25% volume fraction of unidirectional

composite with fibers in the x-direction, a 37.5% volume fraction of composite in the y-direction

and a 12.5% volume fraction of composite in the z-direction. The unidirectional material is taken

to be graphite/epoxy with the properties listed in Table 2 under material A. The bulk epoxy

properties are the same as in the prior sample problems. Using conventional, homogeneous, eight-

node, isoparametric brick elements and the finite element grid of Figure 26A, the extensional

composite elastic constants are

E x = 5.49 x 106psi

Ey = 7.55 x 106P si

Ez = 3.43 x I06psi

Vy z = 0.128

Vxz = 0.131

Vxy = 0.055

The average normal stress in the x-direction in each element as a result of an applied average tensile

stress of 1000 psi in the global x-direction is given in Figure 27. The results are approximate

because the stresses are not constant within each brick element.

The same problem can also be addressed using the replacement element approach. For

example, if the finite element grid of Figure 26B were applied to the XYZ microgeometry there
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would be three of the eight, equal -sized, brick elements that were inhomogeneous. Using tl_

replacement element analysis of Appendix D the pairs of inhomogeneous material in each of these

three elements can be resolved into three different replacement materials. Using one of these

replacement materials in each of the inhomogeneous brick elements the finite element analysis can

proceed as a homogeneous element analysis and the composite stiffnesses and average element

strains obtained. The same replacement material model may then be used to obtain average

constituent stresses and strains within each element. These stress predictions are given in Figure

28. A comparison of Figures 27 and 28 shows that the approximate results from the replacement

element analysis are of considerable engineering value. The moduli predictions from the two

models compare as follows:

E x

Ey

Ez

V'yz

• Vxz

V xy

Homogeneous Elements Rcplaccmcnt Elements

5.49 x 106psi

7.55 x 106 psi

3.43 x 106 psi

0.128

0.131

0.055

5.46 x 106 psi

7.55 x 106psi

3.44 x 106 psi

0.128

0.130

0.054

There are no stiffness discrepancies of any note between the models. The details of the input data

arc given in Appendix E where this sample problem is used to demonstrate the input data

sequences for the interactive use of the replacement element computer code.

Sample Problem #6

The next 3-D sample problem represents a composite comprised of solid glass spheres in an

epoxy matrix. The volume fraction of the glass reinforcing phase is 25%. The spheres are all the

same size and arc assumed to be packed in a cubic array as shown in Figure 29. The ratio of

sphere diameter to the spacing distance between centers of adjacent spheres (in the direction of

closest approach) is 0.684. The problem is the prediction of both the principal Young' modulus in

the x-direction of Figure 29 and the peak normal matrix stress along the line of closest approach

of adjacent spheres when the composite has an average remotely applied tensile loading of one psi

in the x-direction, with all other average stress components equal to zero.

The problem has no known exact solution but a numerical solution could be obtained with

any general purpose, 3-D, finite elements code based on the use of conventional, homogeneous,
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i_tropic elements. However, it is of current interest to obtain a solution using rectangular grids

and replacement elements.

From symmetry considerations only one octant of a unit cell of the composite needs to be

analyzed. Figure 30 divides this octant into cubic elements with the 4x4x4 subdivision shown.

Each element is designated by an ij,k combination of integers. The i integer indicates the element

number along x-axis starting at the origin of Figure 30. j and k are the corresponding element

counts along the y and z-axes respectively. The 1,1,1 element has one corner on the origin and the

4,4,4 element is the farthest one from the origin. Table 3 contains the spherical angies 04/1, _l/2)

that designate the direction of the outward pointing normals from the surface of the glass sphere in

each element. The table also contains the element volume fractions that are glass and epoxy. This

is all the input data that is necessary to compute the principal moduli of the composite and the

stresses in each material of each element using replacement elements. In this example there are 16

inhomogeneous elements out of a total of 64. Each element is modeled as an 8-node,

isoparamctric, cubic element. The constituent propertes are given in Table 1. The predicted

Young's modulus in any of the global coordinate directions of Figure 30 is 0.86x106 psi. The

corresponding Poisson's ratio is 0.29 and the shear modlus is 0.26 x 106 psi. The peak normal

stress concentration in the matrix is 2.5. It occurs at the glass/epoxy interface. The stress

concentration at the same point in a continuous fiber reinforced composite with the same ratio of

fiber diameter to adjacent fiber spacing is 1.80. The stresses within the constituent materials of the

replacement elements appeared to be consistent with the stresses in the neighboring isotropic

elements. The distribution of normal stress along two faces of the unit cell is shown in Figure 31.

Sample Problem #7

The last example of the use of the replacement element analysis considers the plain weave

unit cell and microgeometry of Figure 32 subjected to uniaxial tension in a reinforcing direction.

In this model the resin-impregnated and cured tows are considered to be non-circular tubes of

homogeneous orthotropic material that are woven together. These undulating tubes are bonded

together at all areas of contact and bonded to the bulk matrix pockets which flU all the interstitial

gaps between the tubes. The dimensions of the resin filled tows, the tow spacings and the other

geometric details were chosen to best match the microgeometries observed in photomicrographs of

woven graphite/epoxy composites (Ref. 1). The analysis was done for the purposes of(a)

predicting the extensional stiffness properties of a thick laminate made from symmetrically stacked

layers of plain-weave reinforced composite and Co) predicting the detailed stresses and swains

within one unit cell of this laminate when it is subject to a simple uniaxial tensile stress in one of

the principal tow reinforcing directions.
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By the use of structural and load symmetry the essential portion of the unit cell that needs

to be analyzed can be reduced in volume and complexity. Figure 32 shows one unit cell of the

plain weave microstructure with four planes of symmetry of both load and structure. Only the

fraction of unit cell volume between the four planes of symmetry needs to be considered. This

enclosed volume is shown in Figure 33 with a set of coordinates that parallel the edges of this

regular hex_n of essential structure. The origin of the coordinates is at the centroid of the

hexahedron. These three coordinate axes are also axes of 180 ° rotational symmetry of both load

and structure. Hence, only one quarter of this volume is essential to the analysis. Figure 34 shows

this reduced volume which represents only one sixteenth of the original unit cell volume. Further

symmetry exists for the structure but not the loading. Figure 34 also shows a simple retangular

finite element mesh superposed on the essential structure The use of replacement elements permits

the application of this grid without much regard for the internal boundaries between the two tow

materials and the bulk matrix. The mesh has been graded to give added stress detail near the

crossover point of the upper and lower tows (at the origin of Figure 34). The number of finite

elements in the smallest essential volume is 64 with 125 node points and 375 degrees of freedom

prior to the enforcement of the boundary conditions. Examination of the microstrcture within each

finite element shows that six, or 9.4% of these elements, contain all three constituent materials.

(The two tows are considered to be made from two different materials for bookkeeping

convenience.) Fourteen, or 21.9% of the elements, con_n only one constituent material. The

remaining 44, or 68.7°/0, contain two constituent materials. This high percentage of replacement

elements (78.1%) makes this sample problem different from the previous ones which only required

a small number of replacement elements. Another essential difference is the presence of elements

containing three constituents. These special elements are treated as follows.

First, note that the two tow materials are in direct contact with each other in each element,

rather than being separated by a layer of bulk matrix. Thus, the reinforced portion of each element

that contains tow material can be treated as a subelement that contains only two constituent

materials. Application of the replacement element logic can then be used to combine these two tow

materials into a single anisotropic replacement material. One new factor in this reasoning is that

the subelement containing the two constituents is, in general, no longer a right hexahedron. This

does not appear to invalidate the replacement process. After both tow materials have been lumped

together into a new replacement material then the process can be repeated, combining the new tow

replacement material with the bulk matrix material. The only new factor in the latter application

of the method is that the combined tow material may be generally anisotropic. This possibility is

covered in Appendix C. With these generalizations in place there does not appear to be any reason

to prevent the repeated application of the replacement material logic as many times as necessary in
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any given element as long as a "tree diagram" of constituent material combinations, as shown in

Figure 35A, can be described. Each outer branch (_), (_), (_) of the tree diagram represents a

constituent material. Each junction of two materials (_), (_) represents an application of the

replacement material logic. The lower trunk of the tree diagram (_ represents the final

replacement material that is used to form the stiffness matrix for the element. The present analysis

code (Appendix F) is only general enough to handle the tree diagram of Figure 35A. No more

complexity was required for this sample problem.

As examples_consider the microgeometry of a few of the elements from the current sample

problem. The element designated [_] in Figure 34 contains only one constituent material, the bulk

matrix. The tree diagram for this element is a single trunk of one material with no branches or

junctions. No replacement element analysis is required.

The element designated [_ in Figure 34 contains two constituent materials, the bulk

matrix and one tow material. Figure 35B isolates this clement and shows its tree diagram. The two

constituent material branches combine at the single junction to form the trunk material. A single

application of the replacement logic suffices for this element. Figure 35C isolates element

from Figure 34. This element contains all three constituent materials: the bulk resin and both tow

materials. Its tree structure is identical to Figure 35A. The replacement logic is applied to the two

tow materials (_) and (_) at junction (_) initially to form the new material (_), Material (_)

and bulk matrix material (_) are then combined at junction (_) to form the trunk material (_)

via the second application of the replacement logic.

Some comments on the complex mixed boundary conditions on the six surfaces of the plain

weave structural model are appropriate. Node points on surfaces normal to the z-axis of Figure 36

have the customary symmetry conditions of zero normal displacements" and zero shear forces.

The same conditions also apply on the two sides that are at once normal to the x-axis or y-axis but

not containing either axis. However, on the two sides containing the coordinate origin the

rotational symmetry conditions prevail. Node points along either the x or y-axes cannot displace

normal to the axis and must have a zero applied force component along the axis. A node point

along either of these two sides (but not on the x or y-axes) must have a corresponding node point

that is its mirror image on the opposite side of the coordinate axis that is contained within the side

in which the original node point is located (see Figure 36). The tangential displacements at these

two image nodes must be the mirror image of each other (across the intervening coordinate axis).

The normal displacement must be equal but opposite. The nodal force components normal to the

side must be mirror images of each other. The nodal force components parallel to the side must be

"except for rigid body and cons_t strain displacements
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equalbutoppositelydirectedfrom their mirror imageacrossthecoordinateaxis. Alongtheedges
of essentialstructureacombinationof theconditionsfrom theintersectingsurfacesapplywith the

displacement conditions prevailing over any contradicting force conditions in any specific

coordinate direction. Along the z-axis of Figure 36 the displacements normal to the z-axis vanish,

along with the force component parallel to the z-axis. At the coordinate origin all displacements

vanish. Corner displacements are determined by the particular strain case being studied, except

for displacements conditions at corners A,B,C,D of Figure 36. There the aforementioned mixed

rotational symmetry conditions apply to forces and displacements normal to the faces containing

the x or y-axis.

Table 4 contains all the geometric information required for each element. These values

were all obtained by viewing composite photomicrographs and making many sketches of planar

cuts through the essential structure. It is a chore that would lend itself well to preprocessing.

However, it is a matter of only a few days work as opposed to the weeks of work associated with

setting up and checking out a finite element mesh based upon homogeneous elements.

The tow composite properties used are typical of unidirectional, intermediate modulus,

graphite/epoxy prepreg. Most prepregs cure out to about 65% fiber volume fraction. The fiber

volume fraction within a tow of a fabric reinforced composite is generally in the 70% to 75%

range. This could justify using higher tow composite moduli in the analysis. However, the loss in

properties due to the weaving process have never been established. The use of the lower properties

(associated with 65% fiber volume fraction) is an attempt to compensate for fiber breakage,

misalignment, and other weaving and processing damage. The overall fiber volume fraction for the

analysis model was 64% with 15% interstitial bulk matrix volume fraction and 85% tow volume

fraction. The constituent material properties correspond to the epoxy properties of Table 1 and the

graphite/epoxy A properties of Table 2. The predicted extensional elastic constants are, with

reference to the coordinates of Figure 33,

E x = Ey= 7.88 x106 psi

Ez = 1.69 xl06psi

vxz - Vy z = 0.321

Vxy - Vyx " 0.048

As a reference point, the moduli from test data reported in Ref. 1 are

Ex = 9.13xl06 psi (warp)

Ey s 8.83 x 106 psi (fiN)

Vxy = 0.11
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With conventional laminate theory, for a cross-ply laminate with a 15% thick layer of bulk resin,

the result would be

Ex - Ey -9.68x 106psi

Vxy = 0.050

The stress results are more interesting than the moduli predictions. For a unit remotely

applied stress in the warp direction, with all other average stresses held at zero, the peak warp tow

stress has a value of about 4, giving a stress concentration factor of the same amount. This stress

occurs inside rather than on the surface of the unit c¢11 and away from the cross over point of the

adjacent tows. It occurs as a result of high bending plus axial strain in the tow that roughly

parallels the load direction. Figure 37 contains contour plots of the stress in the fiber direction on

the primary load carrying tow surface. The axial stress in the fill tows are insignificant. Figure

37 also contains a plot of the axial fiber strain concentration factors based on the ratio of fiber

longitudinal strain divided by average composite strain in the load direction. These values differ

significantly from results reported in Ref. 9. The peak fiber strain concentration from the current

analysis is about 1.5 compared to 2.6 reported in Ref. 9. Also, the location of the peak strains do

not coincide. The peak strain occurs on the curved portion of the tow surface away from the edges

of the tow and away from the inflection point of the principal axis of the tow. In Ref. 9 it occurs at

the edges of the tow at the adjacent tow cross-over point. Plots of the other stress and strain

components also differ significantly. The two sets of analyses should not be duplicates of each

other because there were various differences in the models, the constituent properties, the degree of

mesh refinement, the order of the elements, etc. However, the differences in the results seem larger

than expected. Differences in tow cross-sectional variation along the tow axis may account for

much of the discrepancy. In the current analysis vcq,y little tow thickness variation was permitted

because very little was seen in composite photomicrographs. However, in Ref. 9 significant

necking of tbe tow thickness (at the sides of the tow) was built into the analysis model near the tow

crossover point. Some of the strain concentrations could have been the result of these differences

in cross-sectional modeling.

In summary, the stress predictions for the sample problem appear to adequately reflect all

the major combined bending, stretching and shearing effects that were anticipated in the plane

weave tension analysis. The causes for some of the local strain differences between this analysis

and that of Ref. 9 remain to be resolved.

The rotational symmetry boundary conditions that were used with this sample problem are

not used frequently and were not included in the computer program listad in Appendix F. They

were used in this problem simply to avoid the necessity of inverting stiffness matrices larger than

300 square. The program in Appendix F has the more common conditions of geometric unit cell
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surface symmetry plus load symmetry (and asymmetry) built into it. The same results could have

been obtained using the program in Appendix F with some of the larger array dimensions increased

four fold, and one quarter of the unit cell volume analyzed rather than one sixteenth of the volume.
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V. Conclusions

The three-dimensional elastic analysis of complex composite microstructures is made

difficult by the constraint imposed by conventional finite element analysis on the correspondence

of internal material/nterfaces and element boundaries. The concept of a replacement element is

introduced for the purpose of relaxing this constraint. The replacement element combines the

constituent materials within an inhomogeneous element into a single anisotropic material to which

the established f'mite element procedures may be applied. This constituent material combination

depends on simple composite mechanics models for parallel bonded plates. This procedure

involves a physical re,arrangement of the materials within the element and therefore represents an

idealization or approximation of the true material interactions. It has been shown that the use of

these replacement elements can incur errors on the order of 20% in the predicted stresses within the

constituents. However, in the more complex problems in which the replacement elements occur

less frequently the errors in stiffness and internal stress predictions appear to be within a range that

is acceptable for some engineering applications; namely, trade-off studies that lead to the ranking

or selection of specific reinforcement microgeometries to meet specific structural requirements.

Through the use of several example problems of increasing complexity both the application

and results of the replacement element method are observed. The application is simpler and easier

than the conventional f'mite element method in complicated 3-D problems such as those posed by

many fabric reinforced composite microgeometries. The results are less accurate and less reliable,

but still acceptable, in view of the statistical variation in unit cell microgeometries and their

boundary conditions. A large number of f'mite elements are still required to model a complex

microstructure but beyond that point the mechanical analysis is much easier to automate and

eventually merge with computerized unit cell microgeometry generators, preprocessors and

postprocessors. The use of replacement elements still requires some skill in the selection of

rectangular grids which minimize both the number and complexity of the replacement elements.

It remains to establish guidelines for the use of replacement elements so as to minimize the

approximation errors, and also to improve upon the process itself to make it more sensitive to the

details of the constituent material distribution within an element. The latter tasks could not be

undertaken within the seven man-month scope of this effort.
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Table 1: Isotropic Constituents

E x 106psi

Epoxy

V

0.5

G x 106psi

0.35

Aluminum 10.0 0.30 4.0

E Glass 10.0 0.25 4.0

0.18

Table 2: Orthotropic Constituents

E 1 x 106psi E2,E 3 x 106 psi V12,V13 v23

GR/EP A ! 8.0 1.5 0.23 0.35

GR/EP B 21.0 1.7 0.23 0.30

GI2, G13, x 106 psi G23 x 106 psi

GR/EP A 0.7 0.7

GR/EP B 0.7 0.7
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Table 3: Microgeometry Data for Sample Problem #6

Element No.

I,I,I
1,1,2
I, I, 3
I, I, 4
1,2, I
1,2,2
1,2,3
1,2,4
1,3,1
1,3,2
1,3,3
1,3,4
1,4, 1
1,4,2
1,4,3
1,4,4
2,1,1
2, 1,2
2, !,3
2, 1,4
2,2, I
2,2,2
2,2,3
2,2,4
2, 3, 1
2,3,2
2,3,3
2,3,4
2, 4, l
2, 4, 2
2,4,3
2, 4, 4

Interracial Normal ,_.

w

45 °

70 °
7O°

80 °
80 °

2O°
2O0

45 °
45 o

57°

_2

m

78 °
m

450
57o

100
3O°

450
57°

14°
45 o

o

80

Volume Fractions

VGL

1.0
1.0

0.57
0.0
1.0

0.90
0.15
0.0
0.57
0.15
0.0
0.0
0.0
0.0
0.0
0.0
1.0

0.90
0.15
0.0
0.90
0.55
0.0
0.0

0.15
0.0
0.0
0.0
0.0
0.0
0.0
0.0

VEp

0.0
0.0

0.43
1.0
0.0

0.10
0.85
1.0

0.43
0.85
1.0
1.0
1.0
1.0
1.0
1.0
0.0

0.10
0.85
1.0

0.10
0.45
1.0
1.0

0.85
1.0
1.0
1.0
1.0
1.0
1.0
1.0
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Table 3: Microgeometry Data for Sample Problem #6
(continued)

Element No.
(U,K)

3,I,I
3,1,2
3,1,3
3,1,4
3,2,I
3,2,2
3,2,3
3,2,4
3,3,I
3,3,2
3,3,3
3,3,4
3,4, 1
3,4,2
3,4,3
3,4,4
4, I,I
4, 1,2
4,1,3
4,1,4
4,2,I
4,2,2
4,2,3
4,2,4
4,3,I
4,3,2
4,3,3
4,3,4
4,4,1
4,4,2
4,4,3
4, 4, 4,

InterfacialNormal

10o
10o

33 °

_2

10o
30o

80

e

Volume

VGL

0.57
0.15
0.0
0.0
0.15
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Figure 1. Tension bar sample problem #1.
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Figure 2. Inhomogeneous element error in tension bar elongation.
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Unit cells

Figure 3. Sample problem #2 microgeometry.
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F.E. analysis

Triangular
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Figure 4. F.E. grids for sample problem #2 in principal coordinates.
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Figure 5. F.E. grids for sample problem #2 in global coordinates.
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Figure 6. Convergence of rectangular inhomogeneous F.E. solution.
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Subelement Idealization

Inhomogeneous element

Figure 7. 2-D idealization of inhomogeneous element.

Figure 8. Unit cell idealization for sample problem #2.
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Plll 

Figure 9. Finer F.E. grid for unit cell analys!s.

(A)
Unit cell

(B)
Preferred lattice model

(c)
Energy formula model

Figure 10. Lattice model of unit cell.
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Composite Unit cell

Figure 11. Unidirectional glass/epoxy composite.

Figure 12. F.E. grid for unidirectional composite.
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Figure 13. Unit cell idealization for sample problem #3.

Figure 14.

!

0 0.5

/
/

\
I

0 -0.1 -0.1 0

(_x = 1.0)

Contour plots of matrix stresses due to unit average stress in the x-direction.
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Figure 15. Matrix stress contours from conventional F.E. analysis.

Composite Unit cell

Figure 16. Microgeometry for sample problem #4.
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Figure 17. Microstructural dimensions for sample problem #4.
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Figure 18. F.E. grids for NASTRAN analysis of sample problem #4.
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Figure 19. Surface deflections of unit cell from NASTRAN.
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Figure 20. Baseline Internal stress contours from NASTRAN.
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Figure 21. F.E. grids applied to sample problem #4.

(% = 1.0 x 10 "6)

0.19

Figure 22. Stress/deflection results from replacement elements.
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Figure 23. Global and interfacial coordinate systems.
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Figure 24. 3-D weave (xyz construction).
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Figure 25. 3-D weave microstructure.
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Figure 26. Finite element grids for sample problem #7.
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Figure 27. Stresses from homogeneous element analysis.
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Figure 28. Stresses from Inhomogeneous element analysis.
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Figure 30. Glass sphere Inclusion microgeometry and grid.
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Figure 31. Surface normal stress in sample problem #6.
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Figure 32. Plain weave unit cell and microgeometry.
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Figure 33. Plain weave reduced volume.

.011

X

Figure 34. Minimum volume for plain weave analysis.
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Figure 35. Tree diagrams for replacement elements.
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Figure 36. Mirror Image node point boundary conditions.
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Figure 37. Tow surface stress and strain concentrations.
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Figure 38. 2-D transformation geometry.
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Figure 39. 3-D transformation geometry.
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Figure 40. F.E. grid description.
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Appendix A

(The 2-D Replacement Element Stress/Strain Relation)

This Appendix considers the replacement of a contiguous volume, filled with two different

homogeneous isotropic materials, by a single homogeneous orthotropic material. The original

isotropic materials are assumed to be separated by a single flat interracial plane. It is also assumed

that the stresses within each of the original isotropic constituent materials are constant. The pair of

dissimilar bulk materials are, in effect, replaced by a series of alternating parallel plates with each

layer having the same elastic properties as one of the isotropic materials. The interfaces between

each dissimilar plate are parallel to the original bulk constituent inteffacial plane. The thicknesses

of the alternating layers of each material are in the same proportion as the original volume fractions

of bulk constituent materials. As the plate thicknesses diminish the layered structure may be

considered to be a composite material in the macroscopic sense. This composite will have a

principal axis normal to the interfacial plane and the interracial plane will be a plane of isotropy of

the composite. The following analysis relates to the generalized plane strain response of this

composite when the reference plane of the analysis contains the normal to the interfacial plane.

Consider the dissimilar materials i and j, both of which are homogeneous and isotropic with

elastic moduli Ei, Vi, Gi and Ej,Vj, Gj respectively. The materials are in the form of thin flat sheets

bonded together to form a composite as shown in Figure 3. Figure 3 shows two unit cells of the

composite. The volume fractions of the two materials are vi and vj. Coordinate system 1,2,3

(shown in Figure 3) has the axes I and 3 parallel to the material interfacial plane. Axis 2 is

normal to that plane. The stress-strain law for material i, for the generalized plane strain case, is

given by

cl

t I
= -Ei

I -/]i -/"i O-i

-Vi I /"i , 0"_,
i

£i £i I 0 3

(AI)

mid

(A2)

A1



The corresponding equations for materials j are obtained be substituting j for i in equations

(AI) and(A2).

From compatibility of displacements, the composite average strains ( ¢ ,.¢ 2.¢3.

?,2) are related to the strains in materials i andj as follows:

El = E_ = El j

E2 = vi _zi+vj _zj

_3 = _ =_3 j
(A3)

From equilibrium and resolution of forces, the composite stresses (_ LO2.O3. _n)

are related to the constituent stresses as follows:

O'i = Vi O'l i + Vj (::rlJ

0"z= 0"2_= crzj

0"3 = Vi O'3i+Vj EY3j

(A4)

This system of 20 equations may be solved for the average composite stress/strain relation

as follows. First, solve for the constituent stresses using equation (AI) to get

0"3I) Bi B i A i LE:3)

whereAi=Ei ( i-/,,i)/( I +/,/i)( I-ZVi )

Since 0"2; = (3"2i , it follows that

and Bi=Ei Vi/(l+ Vil(i-21ji).

B; E,;+ Ai_;_+ BiE:_= BJEIJ+ AJE2j + BJE3j .

A2



- i J and
Then, since El = El = _ I

BiEi +A i E;_+ B;E 3

This equation may be rewrittenas

;-(AJ)Ej (Si-B; iS;(A;)Ez = )_,+(e - )Es. "

Equations (A3) give another relation between E 2i and E 2 j

Q

(v;)E_+(vj) E_=E2.

i
Solving the two foregoing equations for _2 and _ gives

{E2i} [VJ (Bj-Bi) AjE_zj -" ._- Vi(Bi_8i) A i

• i
_3 = E31 = E3

BJE" I + A j ' j= EZJ+8 _'3"

, namely,

t,2Vi (B i - B ;)-] _3

(A6)

(A7)

where A : A i Vj + A j V i .

Combining the first three lines from (A4) with (A5) gives

B k B k_3 k=i,j 0-3kj k=i,j A_ zsk
(AS)

From (A3) and (A7) it follows that

° l/'lE21 = I Ezi
_3' o _3

(A9)

A3



_3

w_,=,_cm=vj(Bj-Ba)/A
Combining(Ag)and(AI0)gives

and D i = AJ/A.

(AIO)

{,,'}I,°E2i = C i Di i _2

E3i O 0 E3 •
(All)

By interchanging i andj

[!oE2J. = J DJ _z

E_, o _s
(AI2)

where cJ= Vi ( B;-BJ)/A and D j = Ai/A.

Insertingequations(A 1I)and (A 12) intoequation(AS) gives

E_2 = B" AkBw//Ck D" _ Ez
_3 =.. Bk B_A"JLo o c _3 -

(AI3)

This represents the composite extensionalstress/strainrelation.Theextensional

engineeringconstantsforthecompositecanbeobtainedfromtheinverseofthecoefficient

matrixof equation (A 13)

A4



_2_-JL_I§(E-_) (_2-C-2) §((:-_)

_3J I.(B-CD) B(C-A) (AD- B-)

--- (AI4)

wt_-rc

,_= Vi(Ai+BiC i) + Vj(AJ+BiC j)

= Vi BiD i +VjBJD j

_-'= ViBi(Ci+l) +VjBJ(C/+I}

= Vi AiDi+ VjAJD j

(AI5)

The elastic constants are

E,= E3= DET_AI3-8 2)

E_: D_,/_-_ _)

_1._.22= _Zl _ V23_ _ = _(__ (_)///DET
El E2 E2 E3

E-_-"'3-_3,_(_:5__2)/,DE_

(AI6)

The composite shear stress/strain relation is obtained as follows•

Since TI2 = , TI 2 = G. "TI2 and

CG_)7,_- (GJ)_'_ = o.

A5



From (A3)

Solving the two previous equations for '_li_ and _1_ gives

where _7 = V i G j + Vj G i.

Since T,2 = T,_ = 7"1_ then

% = v,_','_+vjr,_

= (V,G') _','_+(vj GJ)?,_

(v,
= (Vi + V i ) '712

(AI7)

(AI8)

This is the composite shear stress/strain relation which could also be obtained from the rule of

mixtures for stiffnesscs in series. Equations (A 13) and (A !8) can be used to establish a

replacement homogeneous stiffness matrix for any such inhomogeneous element. The finite

element solution providcs the nodal displacements and average strains in each element. Equations

(A3) ,(A7) and (A 17)may then be used to obtain the average strains in each constituent material of

each element. The constituent stress/strain laws give the constituent stresses. Failure theories may

then be applied to each constituent and the interface if desired.

Note that all the foregoing equations apply even when one of the two materials is absent. In

this case the stress and strain predictions for the missing material can be ignored.
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Appendix B

(Generalized Plane Strain Transformation of Elastic Constants)

The transformation equations for plane stress and plane strain are well known (Ref. 4).

However, for the generalized plane strain case, the recognized equations are incomplete. There is

another Young's modulus, another coefficient of mutual influence, and two additional Poisson's

ratios related to the out of plane (i.e out of the plane of transformation) response. The added

Young's modulus normal to the plane of transformation is invariant with respect to the

transformation, but the two additional Poisson's ratios and the extra coefficient of mutual

influence are not invariants and their transformation equations are not commonly known. This

Appendix contains their derivation.

For the coordinate system shown in Figure 26 the stress and strain transformation

equations, for generalized plane strain, are given by (Ref. 4),

O'X

O"y i

O'z

T%

c s 2 0 -2sc

}= o 2sc

o 1 o

LSC -SC 0 C2-S2

0.1

0"2

0"3

7"12

(BI)

r

0.1

0.2

O"3

_TI2

-C2 S2

i

S2 C2

0 0

-SC SC
i.=

0 2SC

0 -2SC

1 0

0 C2-S 2

Cry

0.z

'Tx:

(B2)

t

6_

6y S2
}:

0

2SC

S2 0 -SC

C2 0 SC

0 1 0

-2SC 0 C2-S2

61

62

63

(B3)

BI



_3

C2 S2 0 SC -

S2 C2 0 -SC

0 0 1 0

-2SC 2SC 0 C2-S2

Ey

£z

_y

where S and C designate sin _ and cos ¢_respectively. The stress/strain laws in the

principal coordinates of an orthotropic mam'ial are (Ref 4)

(B4)

El

T,

- I/E. -.2./E2 -P3./E3 0 "

-_.2/E. I/E2 _32/E3 0

-v_3/E, V23JE2 I /E3 o
_ 0 0 0 I/Ga2

In a coordinate system obtained by a rotation of _ degrees about the z (or 3) -axis the more

g_m-al anisotropic equations are apply; namely:

IEy : -VxY/E x I /Ey -Uzy/E z T/y,xy/Gxy

_/L-,xz/_x-_y_/Ey ./E_ n_.x,/GxyT_y n_y,_/Exn_y,y/E, n_y,_/Ez _/G_

From (]32), (B3) and (B5)

ExI re eo-,c

Ez/-/o o ,o

)'_yJL_-_: oe__

_,-_,-E,o
V,_ I VJz

"_',-E,_,

0 0 0_

-c_g o 2sc-

s2 c_o-2sc

0 0 r o

-sc sco d-g-

Ox

O'z ---- (B7)

B2



Therefore, from (I36) and 037) after matrix multiplication

I = C 4 EPCZ)S2C2+.E2

* Ez = E3

* Vzx= _31Ca+P3zS 2

, _= P_iS 2 +p_2C 2

Gxy Pl2 I )$2C 2 + _12($4+C 4)El Gtz

Y

• T/_,,: a( _32-_,) sc.

These are the complete transformation equations for the generalized plane strain case. The

equations preceded by an asterisk are not considered in the plane stress or plane strain ease.

The reciprocal relations, from the required symmetry of the stress/strain coefficient matrix,

are given by

____ _ r/_,_y__
J P

Ex Ey Gxy- E=

_y,__xy__U_Y

Ez Ex Ez E,/

Gxx- Ey

r/z,____y_ _7_y___z,_.
' Gx,/ Ez

The last three of these do not appear in the plane stress (or strain) case.
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Appendix C

(The 3-D Replacement Element Stress/Strain Relation)

This Appendix derives the 3-D replacement element stress/sWain relation for a subelement

containing two elastically dissimilar materials. The two constituent materials are generally

anisotropic and separated by an interracial plane that parallels the _,_ axes of Figure 23. The

stresses in any constituent material are assumed to be constant throughout the constituent. From

considerations of equilibrium and action/reaction across the interface the following relations, exist

between the various constituent and average stress components

O'i = Cry!= CYii

_'i = V_cr_+ v; cYyj

o'i = Vi oi_+ vj 0_ j

_i_ = Vi "Gi _+Vj "r}_i

_i_ = T_ i= Ti_ i

_ = -ri_ i = T_ i .

(CI)

From geometric

averagestrains.

6-i =ViEii+vjE_ j

_i - Ei i= Ei j

_i_ : v_ 9'i_ _+ vi "Y_zi

_ii : v_ T_i_+ v j %i j .

compatibility the following constraint conditions apply to the constituent and

(C2)

Equations (C 1) may be rewritten as

&_ 0_ _ 0"_J

°_ / (Y-J

0"_, y.

D'_ = Vi + Vj

Ti9 T_ i/ TigJ

or

c1



-v,[c] ?, +vj[c']_

mvi( ; [, ,i] ,1 [,.J] _ the c( i¢ nt __at _.s( f the¢

Lthe _ii¢o "(li.atc_temo gl _2:;. : rein;quaSi,

i i i j j j i
ell C,5 ClG-Cl, -C15 -CIG f E:f .]

v, o o vj o o 1?_'t
i i i j i J __i

c5, Css CsG-Cs,-Css-CsGJT,y. I,
o v, o o vi o _,'(=

i i i i i i Jc_,co_c_-4,- c_-co_/ ")'_'/
o o v_ o o vi _T_JJ

0 -Cs2-CI3-Ct,_ 0 0 7 _ _
o o o o o/_

-C5:,- C53-cs4 0 0 / E_

i ooo o,;:-CG2-'_G_-_,,o o / T_J
o o o o _j

(C3)

where the matrices [Ci] and [cJ] are the coefficient matrices of the constituentmaterial stress/strain

equations in the_,_,_ coordinate system of Figure 23. From equations (C1), (C2) and (C3)

(C4)

c2



where C-ran designates (Cimn - cJnm) and Cimn is the nmth element of, [ci]. If [D] is the inverse

(obtained numerically) of the leading coefficient matrix in equation (C4) then

T,+IIID_,,D_'.'_D='+"+",+'-' ' 0 0 0 0 011++
"),'_+ii>=I+,,D_,,D_.+.,,roB,,0-_-_-+,,+00l,J++
_,,f+,o+.,:)+,+.++.+,,oooo, o/1+,,
")"+,I +I_( _ _, +,,+,,+,, o -+..,,_._+¢,,+o I |?ram"f'_+JJ , +.;,g,,,,B.++.. B..__o o o o o , j[7,i+

__. (c5)

where l)mn is the nan th element of [D]. Substituting values of the constituent strains from (C5)

into (C3) gives the following stress/strain law for the replacement material within the element of

Figure 23.

m

E_

(C6)

where

X]I = Vi(C_il

Zl3= vi(cj_ B_++c++D+_+C++Bs+)+

C3



+c&(- -De,Cz, + 5_Czs +56sE2o)}

iR24= Vi C_4 +Cz,(D,, C4, +D,3C45 +E),5C46)

+ Cz5( D2,C4, + Dz_ C4s + E)25C46)

C4



- - - '- B_+c),_.)A26= Vi(C:_, D,e+C2'sD26+CaeD36)+Vj {C_I B_+C_5

+ c3s ( DmC3,+ D_._s + DaCe)

_- }+ C 36(D3,C31 + 533C-_.5+ D35C36)

+vj{c:_+c_,(_,,,_,+D_,c,_+_,__
+c _ (_,#_,_+_,c_5 + D_sC_)

• }+c_ (D_,C_,+D_c_,+m_)

_- v, {c_+cj,(_,,c-,,+_,_,,_+_,,e_)
+ C_ ( Da E;_+ D_ C_ + _z_C,_)

+C36(D31C41+D33C45 + D35CwI6)}

+C:_5( _151C..41+E)53C45 + D55C'4.6)

_.35" V, (Ci3l D,4"l" C_5 D24"t" C& D34)"F Vj (C_l D44-1- C:_sE)r.._4+ C J36D64.)

c5



• " w "

-- " -- i-- +_.56= Vi(C_, D,e+C._s Dzr_+Csc=D3G) Vj(C_, D4_+C_5 D.5_+C_¢5_)

- i- _ i j " . "_,66--V'(C61 DI,+ C65026 C66D36)+Vj (C61 D464"C_5"D'_,+C_¢'Dc.:g).

o

The matrix [A] is symmetric.

The replacement stress/strain equation (C6) must be transformed into the global x,y,z coordinate

system for use in forming the stiffness matrix of the replacement element. When the finite element

solution to the deformations of the unit cell is obtained the average strains in each element can be

computed. In a replacement element the average strains can be transformed into the _,_

interracial coordinate system. Equations (C2) and (C3) will then give the average strains in each

constituent material. These strains can be transformed into the principal axis of the material and

the constituent stresses computed. Any yield or initial failure criteria can then be applied to the

constituent materials or the interface.
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Appendix D

(The 3-D Stress/Strain Transformations)

Any 3-D stress/strain coefficient matrix in the _,_,,_ coordinate system of Figure 39A can

be transformed into the global x,y,z coodinate system in two stages. The first stage consists of a

rotation of (_ 1 degrees about the z-coordinate axis of Figure 39A. The positive sense of rotaton

for 01 is clockwise to an observer at the origin looking in the positive z-direction. From the

equilibrium of triangular wedge elements whose faces are normal to the coordinate axes it can be

shown that the stresses in both coordinates are related as follows

O" x

fly

ffz

Tyz

Txz

Txy

=

m

o oo.2s,c,
0 0 0 2SIC I

0 0 I 0 0 0

0 0 0 C I S I 0

0 0 0 -S I C I 0

SIC,-SIC I 0 0 0 (CI2-SI 2)

O/
:: _(DI)

T:: I

T::|
"TigJ

where S 1 ffi sin OI and C 1 ffi cos _PI. The reverse or inverse transformation is readily obtained

by substituting - OI in place of O1 in the previous equations giving

7"iZ
_V

c,_ _,_ o o o 2s,_,"
_,_ c,_ o o o-_s,_,
0 0 I 0 0 0

0 0 0 C I -S I 0

0 0 0 S I C I 0

-SIC I SiC I 0 0 0 |CI2-S_1 )

(7"X

O'y

O"z

Tyz

7"xz

'Txy
i
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By definition the two coefficient matrices in (DI) and (D2) must be the inverses of each other. The

strain transformation equations for the same rotation of _1 degree about the z-coordinate are

derived from geometric considerations alone and given by

E

E

E

?

X

_'Z -

XZ

Y

- Cl2 S12 0 0 0 -SiC I -

S2 Ci2 0 0 0 SiC I

0 0 I 0 0 0

0 0 0 C I S I 0

0 0 0 -S I C I 0

2SlCl-2SlCl 0 0 0 (Cl2-Sl2 L

E_

E_

E_ (D3)

with the reverse transformation

E_. = 0 0 I 0 0 0

IT_ o o o c, -s, o ">
o o o =, o

x

Y

Z

',YZ

,XZ

XY

(D4)

The second stage of the transformation consists of a rotation of _P2 degrees about the y-

coordinate as shown in Figure 39B. In this case the positive sense of rotation for _P2 is counter

clockwise to an observer at the origin looking in the positiveS-direction. The relationships

between the stresses and strains before and after this latter transformation are
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where S 2 = sin _2 and C2 = cos _2.
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The stresses and strains in the final _,_,z"-coordinates are thus related to the original stresses

and strains in the x,y,z coordinates by the following equations obtained by multiplying the

appropriate pair of coefficient matrices in equations (D3) through (D8) in the correct order.
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- c_c: s,_ c:s: 2s,c,s,-2_s,c,-2s,c,c,
IL 2.s,c, c_, s',s_.-2s,c,s,-2s',,sF,2s,c,c,
s_ o c) o %£ o

s,s,c, o -s,s,c, c,% s,c_-s_c,s,
c_szcz 0 -ClSzCz -S,Ct c,(c_-_-S_St

S|CiC_ _SiC I SlClS" _ 2. 2 S_ -(ccs,_,-2s,c&c,(c,-s)c,

O'y

l_zl
I_I

__T_,j

-- (D9)

(c,c;s_c) s_(_ 1-" _,s,c,_,_,c,_,c,c:-i
o o o- s,c,I
o c,c, i

[ rxy) Ls'c'c, s,c,c,s_ c,s, - s,s, (c,Ls,_)c_j

O"X

Cry

ffZ -- (1)10)

Tyz

Txz /

TXy)

Ex

_y

£z

iT,,

- r.2rz _t S_C_S_-C_SzC_ -S_C_Cz•","z ", C_S: ' -
_2_?. ^t 2 l 2.

_c2 t,_ S,St -SlC_S2-S_SzC_ S_C_C2

s) o c_. o s,c_ o
2s,s_£ o -2s&c_ c,% s,(c_-_)c,s_
_c,s_c,o zc,s_c,-s,c,c,(c_-s_)-s,%

_ss_c_-_s,c,_s,c,s_-(c,-s,)s,-_s,c,s_£(cr@_

£z
-m_)

D4
t



_ fro2)

Note that the coefficient matrix in (DI 1) is the transpose of the coefficient matrix in (D10) and the

coefficient matrices in 0)9) and (DI2) are also transposes of each other. This fact considerably

simplifies the use of these equations.
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Appendix E

(Instructions for Use of the 3-D Computer Program for Resolving Stresses in a Unit Cell)

l_e program REPLACE is a FORTRAN code that analyzes a 3-D unit cell structure for

the composite moduli and the internal stresses in each material of each element of the finite element

model of the unit cell. The only element in the program is the eight-node isoparametric brick

element. The stiffness matrix for this element is formed by numerical integration over eight

Gaussian integration points. The boundary conditions of structural symmetry are assumed to

apply on all faces of the unit cell.

The input data can be considered to be four different data packages. The first package

serves to establish an ad hoe file of constituent materials and their elastic properties for use in the

current run. The second data package establishes the hexagonal finite element grid for the unit ceil.

The third data package contains the constituent material distribution information for each brick

element in the finite element grid. The last data package contains the average applied stresses to be

used for the detailed internal stress computations. Each data package will be described in the

foregoing sequence, starting with the constituent materials file.

The program operates interactively and is largely self-explanatory through the prompt

messages. The first block of input data serves to establish an ad hoc array of constituent materials

and their elastic constants for use in the current run. These constituents can be selected from the

eight sets of resident materials whose properties correspond to unidirectional high, medium and

low modulus graphite/epoxy, unidirectional glass/epoxy, bulk aluminum, bulk epoxy, etc. (see

Table 5). New sets of material properties can be input either by inserting new DATA statements at

the beginning of the program or by following a sequence of material input prompts.

The first piece of input data is a single digit integer (NM) that specifies the number of

constituent materials to appear in the ad hoe list of materials for that run. Not all of the materials

on the list need to be used and the same material may appear more than once. Each material is

presumed to be orthotropie with a plane of isotropy. Thus, six elastic constants suffice to def'me

the linear response of the material. Whatever, additional material constants are associated with the

yield or failure criteria must also be input. The six elastic constants (in the sequence in which they

are input and stored) are the Young's modulus in the principal reinforcing direction, the Young's

modulus in the plane of isotropy, the longitudinal/transverse Poisson's ratio, the Poisson's ratio in

the plane of isotropy, the longitudinal/transverse shear modulus, and the shear modulus in the plane

of isotropy. A maximum strain failure criteria is currently in the program. It requires four

additional constants per material. The four input constants associated with this criteria are the
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longitudinal tension and compression strain and the transverse tension and compression strain.

The initial input number of materials (NM) establishes a do loop for filling the materiel property

(NIP) array that contains the ten input constants for each of the (NM) constituent materials. The

program requests a constituent material data location number for data insertion in the Fu'st row of

the MP array. If a mat_al number between one and eight is specified then the ten material

constants from that data statement arc inscr',cd in the ftrst row of the MP array for the properties of

what will be known subsequently as constituent material number one. If a data statement number

greater than eight is called for then the program makes ten queries for each material property to b¢

inserted in the Fu'st row of the MP array. This sequence is repeated until each row of the material

property array is filled. The constituent material input sequence also establishes a numbering

scheme for recalling the constituent material properties. The first row of MP array to b¢ filled is

henceforth material number one, the second is material number two, etc.

Following the material property selection is the description of the geometry of the

rectangular finite element grid to be used in the analysis of the unit cell structure. The first input

quantity specifies the side length of the unit cell in the x-direction. The second quantity is an

integer (NBX) that specifies the number of brick elements along one side of the unit cell in the xo

direction. If NBX is greater than one then the distance of each node point from the origin in the xo

direction must be specified. This is done by specifying the x-distance from the origin to the

farthest interior point of each element that lies along the x-axis of Figure 40, starting with the

nearest element to the origin and ending with the farthest one. Each distance is designated as a

percentage of the x-side length of the unit cell. The last distance in the x-direction is not specified,

but is assumed to be 100% of the unit cell side length in that direction. The same set of quantities

arc then specified for the y-direction of the unit cell gri d and then repeated once more for the z °

direction. This establishes the finite element grid.

It remains to describe the material distribution within each brick element. This is

done by means of a triple nested do loop starting with the brick element closest to the origin

of Figure 40. The material distribution within that element is described in its entirety

before the inner do loop indexes to the next element in the plus zod_ction for the same

material distribution data. This inner do-loop continues to index in the z°dircction until the

last element touching the z-axis is fully described. The middle do-loop then indexes to the

second brick elcrn_t (from the origin) along the y-axis. The inner do-loop once again

ranges over each ¢lem_t in this second stack of brick elements, requisitioning materials

information for each in the same sequence. When each z-stacking of brick elements along

the x=0 face of the unit cell is described then the outer do-loop indexes to the next brick

element along the x-axis and the two inner do-loops arc restarted. Now consider tbe way

the distribution of material in each brick element is de.scribed.
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The materialdistributionwithina brickelement must be reducibletoa seriesof

constituent material junctions as shown in Figure 35A. Each branch or trunk represents a

differentmaterialwith thetwo branch materialscombined toform thetrunkmaterial(as

described in Appendix C). The main trunk of the tree structure represents the single

material to be used in that element stiffness matrix calculation.

The tree structure can, in principal, be as complex as necessary as long as each

junctioncontainsno more than two branches and one trunk.However, inpractice,each

finiteelement has itstreestructurelimitedtotwo junctions.No more complexity was

requiredforthe example problems considered.With thislimitationa finiteelement can not

containmore thanthreedifferentconstituentmaterials,as shown inFigure 35C. Each of

thethreeouterbranches must containa singleconstituentmaterialchosen from one of the

setsof materialpropertiesestablishedintheNIP array.The descriptionof theouterbranch

consistsof thematerialdesignationnumber, correspondingtotheMP row number, and the

pairof sphericalcoordinateangles(_)I,_2) thatspecifythegrainor fiberdirection,as

shown in Figure39. Each junctionmust alsocontaina descriptionofthevolume fraction

ofeach branch and thepairof sphericalcoordinateangles(_ I,_2) thatspecifythe

directionof thenormal totheinterracialplane separatingthetwo branch materials(see

Figure23). Beforeinputtingany unitcellanalysisproblem thetreestructureofeach finite

elementshould be sketchedand labeledasshown inFigure35.

In summary, fifteendatavaluesarenccdcd todescribethemost generaltwo-

junctionmaterialarrangement ineachelement. These numbers areprompted and inputin

thefollowingsequence (withreferencetoFigure 35A):

a) materialproperty(NIP) arrayrow designationforbranch (T)

b) sphericalangle 071forfiberdirectionin branch (_)

c) sphericalangle _2 forfiberdirectioninbranch C)

d) materialproperty(MP) arrayrow designationinbranch (_)

e) spherical angle _ 1 for fiber direction in branch (_)

f) spherical angle _2 for fiber direction in branch (_)

g) volume fraction of branch (_ material at junction (_)

h) spherical angle tl/1, for interfacial normal at junction (_)

i) spherical angle ti/2 for interfacial normal at junction (_

j) material property (NIP) array row designation for branch (_)
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k) spherical angle _ lfor fiber direction in branch (_)

i) spherical angle ¢_2for fiber direction in branch (_)

m) volume fraction of branch (_) material atjunction (_

n) sphericalangle _1/1for interracial normal atjunction (_)

o) spherical angle W2 for interfacial normal atjunction (_)

If there is only one junction in an element (or no junctions) less input information is

needed. For one junction only the first nine inputs ((a)-(i)) are needed. For no junctions

only the first three inputs ((a)-(c)) are needed. To trigger the correct set of prompts, the

first piece of input data for any element is the integer 0 through 2 that specifies the number

of junctions in the tree structure. Then the appropriate set of prompts will automatically

follow in the foregoing sequence. All angles are to be specified in degrees and decimal

fractions of a degree. Volume fractions of materials are specified in decimal fractions form

(0.0 to 1.0.) This completes the description of the material content of each element. The

stress output for each element is given in the reverse order of the sequence of junction

descriptors. The stresses are given in the principal axes of the constituent material. Each

material will also have its minimum margin of safety computed based on a maximum

strain criteria (with respect to the principal axes of the material).

The only remaining input is the specification of the six components of the 3-D,

applied, far-field stresses for which the internal stresses in each material in each element are

to be computed.

The 3-D weave (or XYZ material) serves as a simple example for controlling and

responding to the unit cell analysis program input prompts. The composite consists of

three sets of unidirectional graphite/epoxy tows interspersed as shown in Figure 24. The

tows in the x,y and z direction are all of a different size. The x-direction tow fills 25% of

the unit cell. The y-direcrion tow fills 37.5% of the unit cell. The z-direction tow fills

i 2.5% of the unit cell. The remaining 25% of the volume is bulk epoxy. The finite element

mesh could easily be adjusted so that each element was homogeneous. However, for

illustrative purposes the mesh will be set up such that there are three inhomogeneous

elements (out of a total of eight) each containing two different constituent materials. The

grid is chosen such that all the finite elements have the same dimensions, and there are two

elements stacked in each coordinate direction. There are only two materials needed:

unidirectional graphite/epoxy (the first material among the DATA statements) and bulk

epoxy (the sixth material in the DATA statements). Thus, the first three input integers
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de_lare that two mat_'ials arc ncc&d and that they arc constittt_t materials number one

and six. Since material one was listed first it becomes material number one for the rest of

the run. Material six hereafter becomes material number two. A printout of the series of

program prompts and responses are given at the end of this Appendix along with the

stiffness and stress output. The input is echoed in double parentheses to distinguish it from

the prompts. The unit cell dimensions are 2.0 units in the x,y and z-directions. The center

node point along each edge of the unit cell divides the edge into two equal lengths. The

exploded sketch of Figure 28 shows the sequence in which the eight elements are

described. Elements (_) , (_) and (_) arc inhomogen_us.

The fh-st element contains both constituent materials: unidirectional graphite/epoxy

and bulk epoxy, in equal volumes. The fiber direction angles are (D1=0° and _)2---90o for

material (_ . The volume fraction for material one is 0.5. Any direction angles can be

specified for material two, the isotropic bulk epoxy. In this case _)1=0 o and (_2=0o were

sp(:cified. The interracial normal has _ 1 = _2 = 0° as its direction. This information

fully describes the material content of the first element.

Element two contains only one constituent material, but half of the fibers arc going

in the y-direction and half arc going in the z-direction. This can bc reprcs_ted by a single

junction with both branches made from constituent material number one. One branch has

fiber direction angles of t_ l-- 0° and t_2= 90 o. The other branch has fiber direction angles

of _l = 90° and _2 = 0°. The volume fraction of branch (_) material is 0.5 and the

inteffacial normal has the direction angles _ l = 0° and _/2 = 0°.

The third element is homogeneous in material one with no junctions. The fiber

directions are (_l = t_2--0o.

The fourth clement differs from the first only in the fiber direction angles. The rest

of the elements are homogeneous with no junctions.

The average applied stress is 1000 psi tension in the x-direction with the other stress

components equal to zero.

The output consists of the composite moduli and the stresses in the principal axes of

each constituent material in each element. Minimum margins of safety are also given.
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INPUT NO. COMPOSITE MATERIALS NEEDED,NM

(( 2 ))
SELECT A MATERIAL NUMBER FROM ONE TO TEN

(( 1 ))
SELECT A MATERIAL NUMBER FROM ONE TO TEN

(( 6 ))

MATERIAL PROPERTY DATA ECHO

18000000.00 1500000.00 0.23
0.1000E-01 0.I000E-01

500000.00 500000.00 0.35
0.1000E-01 0.I000E-01

INPUT SIDE LENGTH OF UNIT CELL IN X DIR.

((2.0))
INPUT NO. SUBCELLS (X DIR.) _UNIT CELL

(( 2 ))
INPUT DIST.(q) ORIGIN TO UNIT CELL NODE

((50.0))

INPUT SIDE LENGTH OF UNIT CELL IN Y DIR.

((2.0))
INPUT NO. SUBCELLS (Y DIR.) IN UNIT CELL

(( 2 ))
INPUT DIST.(t) ORIGIN TO UNIT CELL NODE

((50.0))

INPUT SIDE LENGTH OF UNIT CELL IN Z DIR.

((2.0))
INPUT NO. SUBCELLS (Z DIR.) IN UNIT CELL

(( 2 ))
INPUT DIST.(t) ORIGIN TO UNIT CELL NODE 2

((50.0))

INPUT NUMBER OF JUNCTIONS AT LOCATION

(( I ))
INPUT MATL. NO. 1 AT 1 1 I

(( I ))
INPUT 1ST FIBER SPHERICAL ANGLE

((0.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((90,0))
INPUT MATL. NO. 2 AT 1 1 1

(( 2 ))
INPUT 1ST FIBER SPHERICAL ANGLE

((0.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))
INPUT IST MATL. VOLUME FRACTION

((0.5))
INPUT IST INTERFACIAL NORMAL ANGLE

((0.0))
INPUT 2ND INTERFACIAL NORMAL ANGLE

((0.0))

0.30 700000.00 700000.00

0.1000E-01 0.1000E-01

0.35 180000.00 180000.00
0.1000E-01 0.1000E-01

INPUT NUMBER OF JUNCTIONS AT LOCATION

(( 1 ))
INPUT MATL. NO. I AT 1 1 2

(( 1 ))
INPUT 1ST FIBER SPHERICAL ANGLE

((0.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((90.0))
INPUT MATL. NO. 2 AT 1 1 2

(( 1 ))
INPUT IST FIBER SPHERICAL ANGLE

1 1 1

1 1 2
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((90.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))
INPUT IST MATL. VOLUME FRACTION

((0.5))
INPUT IST INTERFACIAL NORMAL ANGLE

((0.0))
INPUT 2ND INTERFACIAL NORMAL ANGLE

((0.0))

INPUT NUMBER OF JUNCTIONS AT LOCATION

(( 0 ))
SPECIFY THE CURRENT MATL. ID. NO.

(( i ))
INPUT IST FIBER SPHERICAL ANGLE

((0.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))

INPUT NUMBER OF JUNCTIONS AT LOCATION
(( i ))

INPUT MATL. NO. I AT I 2 2

(( 2 ))
INPUT IST FIBER SPHERICAL ANGLE

((0.0))
INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))
INPUT MATL. NO. 2 AT 1 2 2

(( i ))
INPUT 1ST FIBER SPHERICAL ANGLE

( (90. O) )
INPUT 2ND FIBER SPHERICAL ANGLE

((0.0))
INPUT IST MATL. VOLUME FRACTION

((0.5))
INPUT 1ST INTERFACIAL NORMAL ANGLE

((0.0})
INPUT 2ND INTERFACIAL NORMAL ANGLE

((0.0))

INPUT NUMBER OF JUNCTIONS AT LOCATION
(( 0 ))

SPECIFY THE CURRENT MATL. ID. NO.
(( 2 ))

INPUT IST FIBER SPHERICAL ANGLE
((0.0))

INPUT 2ND FIBER SPHERICAL ANGLE
((0.0))

, INPUT NUMBER OF JUNCTIONS AT LOCATION
(( 0 ))

SPECIFY THE CURRENT MATL. ID. NO.
(( I ))

INPUT IST FIBER SPHERICAL ANGLE
( (90. O) )

INPUT 2ND FIBER SPHERICAL ANGLE
((0.0))

INPUT NUMBER OF JUNCTIONS AT LOCATION
(( 0 ))

SPECIFY THE CURRENT MATL. ID. NO.
(( 1 ))

INPUT IST FIBER SPHERICAL ANGLE
((0.0))

INPUT 2ND FIBER SPHERICAL ANGLE
((0.0))
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INPUT NUMBER OF JUNCTIONS AT LOCATION

(( 0 ))

SPECIFY THE CURRENT MATL. ID. NO."

(( 1 ))

INPUT IST FIBER SPHERICAL ANGLE

((90.0))

INPUT 2ND FIBER SPHERICAL ANGLE

((0.0})

2 2 2

ELASTIC CONSTANTS OF THE COMPOSITE

EX, EY, EZ - 5459114.00 7546501.50 3438649.50

MUYZ,MUXZ,MUXY - 0.1276 0.1300 0.0544

MUZY,MUZX, MUYX - 0.0581 0.0819 0.0752

INPUT APPLIED STRESSES IN X,¥,Z COORDINATES

INPUT X NORMAL STRESS

i000.0 )

INPUT Y NORMAL STRESS

0.0 )

INPUT Z NORMAL STRESS

0.0)

INPUT YZ

0.0: )

INPUT XZ

0.0)
INPUT XY

0.0)

SHEAR STRESS

SHEAR STRESS

SHEAR STRESS

STRESSES IN ELEMENT NO.

MATERIAL NO. 1

NORMAL 1,2,3 -377.26

SHEAR 23,13,12 -0.49

MINIMUM MARGIN OF SAFETY IS

1 1 1

32.66

0.70
0.9976

179.47

0.48

STRESSES IN ELEMENT NO.
MATERIAL NO. 2

NORMAL 1,2,3 179.47
SHEAR 23,13,12 0.12

MINIMUM MARGIN OF SAFETY IS

1 1 1

86.62

-0.70

0.9759

81.30

0.49

STRESSES IN ELEMENT NO.
MATERIAL NO. 1

NORMAL 1,2,3 -348.27

SHEAR 23,13,12 -5.62

MINIMUM MARGIN OF SAFETY IS

1 1 2

66.55

-5.46

0.9976

292.88

0.35

STRESSES IN ELEMENT NO.
MATERIAL NO. 1

_ORMAL 1,2,3 -96.79

SHEAR 23,13,12 -5.46

MINIMUM MARGIN OF SAFETY IS

1 1 2

292.88

0.35

0.9990

STRESSES IN ELEMENT NO. 1 2 1
MATERIAL NO. 1
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NORMAL 1,2,3 3337.00
SHEAR 23,13,12 -0.30
MINIMUM MARGIN OF SAFETY IS

62.39
1.68

0.9816

47.98
i .93

STRESSES IN ELEMENT NO.

MATERIAL NO. 2
NORMAL 1,2,3 190.64
SHEAR 23,13,12 -0.11
MINIMUM MARGIN OF SAFETY IS

1 2 2

91.97
1.15

0.9744

STRESSES IN ELEMENT NO.

MATERIAL NO. I
NORMAL 1,2,3 -135.34
SHEAR 23,13,12 -1.15
MINIMUM MARGIN OF SAFETY IS

1 2 2

190.64
-0.42

0.9990

17.88
1.28

STRESSES IN ELEMENT NO.
MATERIAL NO. 2
NORMAL 1,2,3 134.54
SHEAR 23,13,12 -0.30
MINIMUM MARGIN OF SAFETY IS

2 1 1

61.80
-0.54

0.9813

55.90
0.21

STRESSES IN ELEMENT NO.
MATERIAL NO. 1

NORMAL 1,2,3 -106.32
SHEAR 23,13,12 -5.07
MINIMUM MARGIN OF SAFETY IS

2 1 2

282.81
-0.75

0.9990

STRESSES IN ELEMENT NO.
MATERIAL NO. 1

NORMAL 1,2,3 330?.09
SHEAR 23,13,12 0.81
MINIMUM MARGIN OF SAFETY IS

2 2 1

61.25
0.53

0.9818

44.10
1.53

STRESSES IN ELEMENT NO.
MATERIAL NO. 1

NORMAL 1,2,3 -101.96
SHEAR 23,13,12 -1.68
MINIMUM MARGIN OF SAFETY IS

2 2 2

2?5.56
1.24

0.9990

46.96
2.88
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Appendix F

(FORTRAN Program Listing)
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C
C
C

PROGRAM REPLACE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CC PROGRAM TO COMPUTE THE 3-D INTERNAL STRESSES CC

CC IN A UNIT CELL OF AN INCLUSION ARRAY CC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SPECIFICATION STATEMENTS

PARAMETER (MM-Z0,MM.M-300,NNN-400]

REAL MP(8,10),KS(24,24]

DIMENSION SK{24,24|,UVWS(24]

DIMENSION
DIMENSION

DIMENSION

DIMENSION

DIMENSION
DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION
DIMENSION

DIMENSION

DIMENSION
DIMENSION

DIMENSION

DIMENSION

REAL

KA(7) ,LC(24)
TS (6) ,TSS (6), TSI (6) ,TS2 (6), ST1 (6), ST2 (6)

SIG (6), STN(6}

PR(6, 6), RP (6, 6), T (6, 6), BIG (6, 6)

DD(6, 6) ,DDI (6, 6), DD2 (6, 6]
SS (6, 6) ,SSl (6, 6) ,SS2 (6, 6]

SSSl (6, 6] ,SSS2 (6, 6)

BM(6, 24} ,DB(6,24]

PROP (P_, 10), DX (MM), DY (MMI, DZ (MM)

FDX {MM+ 1], FDY (MM+ 1 ] ,FDZ (MM+ 1 )

FB (NNN, 7) ,FS (MMM, 7), FT (6, 7], TF (6, 7| ,FTT (6, 6)

UVW (NNN, 6), VU (NNN)
MNI (MM, MM, MM) ,MN2 (MM, MM, MM) ,MN3 (MM, ME4,MM)

FVI [MM, MM, MMJ ,FV2 (MM, MM, MM) ,NJC (MM, _t4,MM)

ANGIA (MM, MM, MM) ,ANG2A (MM, MM, MM), ANG3A (MM, MM, MM)
ANGIB [MM, MM, MM), ANG2B (MM, M_J,MM), ANG3B (MM, MM, MM)

AGNIA (MM, MM, MM) ,AGN2A (M_M,MM, MM}

AGNIB [MM, MM, MM), AGN2B (MM, MM, MM)

KB (NNN, NNN), KM [MMM, NNN), KN (MMM, MMM)

BUILT IN MATERIAL PROPERTY DATA

DATA (KA(I],I-1,7)/I0,6,6,1,6,0,0/,
1 (MP (i, I), I-l, i0)/18.E6, I. 5E6,. 23,. 30, .7E6, .7E6, .01, .01, .01, .01/,

2 [MP (2, l] ,I-l, I0) 12.1E7, 1.7E6, .23, .30, .7E6, .7E6, .01, .01, .01, .01/,
3 (MP(3, I] ,I-I,10] / 3.0E7,1.7E6, .23, .30, .TE6, .TE6, .01, .01, .01, .01/,

4 (MP(4,I),I-l,Z0]/Z.0E7,1.5E6,.25,.35,.?E6,.TE6,.01,.01,.01,.01/,
5 [MP(5,1),I-I,Z0)/Z.2E7,1.5E6,.25,.35,.TE6,.?E6,.01,.01,.01,.01/,

6 (MP (6, I) ,I-l, I0] / .5E6, .5E6, .35, .35, .18E6, .18E6, .01, .01, .01, .01/,

7 (MP(7, I),I=I,10)/Z.E7, Z.E7,.30,.30,.4E7,.4E?,.01,.01,.01,'01/,

8 (MP(8,I],I=I,10}/I.E7,Z-E7,'25,'25,.4ET,'4E7,'01,'01,'01,'01/

INITIALIZE VARIABLES

ISYM-0

DO I0 I-I,MMM

DO I0 J-l,7

I0 FS(I,J)-0.0

DO 12 I-I,MMM

DO 12 J-I,MMM

12 KN (I, J)-0.0
DO 15 I-i,6

DO 15 J'l,7

TF(I, J)'0.0
15 FT(I, J) "0.0

WRITE (6,9100)

READ(5, 9030) NM

WRITE (6, 9899) NM

MATERIAL PROPERTY DATA INPUT
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17

18

19

DO 18 I-I,NM

WRITE (6, 9180)

READ (5, 9030) M

WRITE (6, 9899) M

IF (M.GT. 8) THEN

WRITE (6, 9120)
READ(5,9010) PROP(I,1)

WRITE (6,9130)

READ(5,9010) PROP(I,2)

WRITE (6, 9140)

READ (5, 9010) PROP (I, 3)

WRITE (6, 9150)
READ(5, 9010) PROP (I, 4)

WRITE (6, 9160)

READ(5, 9010) PROP (I, 5)

WRITE (6,9170)

READ(5,9010) PROP(I,6)

WRITE (6,9175)

READ(5,9015) PROP(I,7)

WRITE (6, 9177)

READ(5,9015) PROP(I,8)
WRITE (6, 9178)

READ(5,9015) PROP(I,9)

WRITE (6, 9179)

READ(5,9015) PROP(I,10)

END IF

IF (M.LE.8) THEN

DO 17 J'1,10

PROP (I, J) "MP (M, J)
END IF

CONTINUE

WRITE (6,9560)

WRITE (6,9190)

DO 19 I'I,NM

WRITE (6, 9020)

WRITE (6, 9025)
C

C READ MESH

C

(PROP (I, J) ,J'1,6)

PROP (I, 7) ,PROP (I, 8) ,PROP (I, 9) ,PROP (I, I0)

GEOMETRY

22

25

WRITE (6, 9560)

WRITE (6, 9440)

READ(5, 9000) XL

WRITE (6, 9898) XL

WRITE (6, 9080)

READ(5, 9030) NBX

WRITE(6, 9899) NBX
FDX (I)-0.0

FDX (NBX+I) -i00.0
IF(NBX.LE.I) GO TO 25

DO 22 I-I,NBX-I
WRITE (6,9460) I+1

READ(5,9000) FDX(I+I)

WRITE (6,9898) FDX (I+l)
CONTINUE

WRITE (6, 9560)

WRITE (6, 9450)

READ(5, 9000) YL

WRITE(6, 9898) ¥L

WRITE (6, 9090)

READ(5, 9030) NBY

WRITE (6, 9899) NBY
FDY (I)-0.0

FDY (NBY+I) -100.0

IF(NBY.LE.1) GO TO 35

DO 30 I-1,NBY-1

WRITE (6, 9460) I+1
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READ(5,9000) FDY(I+I)

30 WRITE(6,9898) FDY(I+I)

35 CONTINUE

WRITE (6, 9560)

WRITE (6, 9455)

READ (5, 9000) ZL

WRITE (6, 9898) ZL

WRITE (6, 9095)

READ (5, 9030) NBZ

WRITE (6, 9899) NBZ

FDZ (1) -0.0
FDZ (NBZ+I) -100.0

IF(NBZ.LE.1) GO TO 135

DO 130 I-I,NBZ-1

WRITE (6, 9460) I+1

READ(5,9000) FDZ(I+I)

130 WRITE(6,9898) FDZ(I+I)
135 CONTINUE

NP- (NBX+I) * (NBY+I) * (NBZ+I) *3

DO 230 I-I,NP

DO 230 J-1,6

230 UVW (I, J)-0.0

DO 250 I-1,NNN

DO 240 J-1,7

240 FB(I, J)-0.0

DO 250 J-I,NNN

250 KB(I, J)-0.0
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C BEGIN OUTER DO LOOP OVER THE NO. OF BRICK ELEMENTS C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

DO 2400 I-1,NBX

DO 2400 J-1,NBY

DO 2400 K-I,NBZ
C

C GET

C

C
C
C

ELEMENT DIMENSIONS

A-FDX (I+1) -FDX (I)
A'A*XL/100.

AA'0.5*A

DX(1)'0.0

DX (2 )-A

B'FDY (J+l) -FDY (J)
B'BtYL/100.

BB'O.S*B

DY(Z)-0.0
DY(2)-B
C-FDZ (K+I) -FDZ (K)
C'C*ZL/100.
CC-O. 5"C

DZ (I) -0.0

DZ(2)-C
VOL-A*B*C

260

DO 260 II-1,24
DO 260 JJ-l,24

KS(II,JJ)-0.0

INPUT TYPE OF MATERIAL JUNCTION IN THE ELEMENT (0,1,OR 2)

WRITE (6, 9560)

WRITE (6, 9060) I,J,K

READ (5, 9030} NJC(I,J,K)

WRITE (6, 9899) NJC (I, J, K)

JNC-NJC (I, J, K)
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C
C
C

C
C GET
C

C
C GET
C

C

INPUT MATERIAL TYPE AND FIBER DIRECTION ANGLES

IF (JI_C. LT. I) THEN

WRITE (6, 9320)

READ(5,9030) MNI(I,J,K)

MN-MNI (I, J, K)

WRITE(6,9899) MNI(I,J,K)
WRITE (6, 9480}

READ (5, 9000) A1

ANGIA (I, J, K}-A1
WRITE (6, 9898) A1

WRITE (6, 9490)

READ(5, 9000} A2

ANGIB (I, J, K) -A2

WRITE (6, 9898) A2

CALL TRANS2 (AI,A2,T)

STRESS-STRAIN MATRIX (SS) IN MATL. COORD.

CALL GETSS(_,MN, PROP,SS)

STRESS-STRAIN MATRIX (SS) IN GLOBAL

280

290

DO 290 II-l,6

DO 290 JJ-1,6

SUM-0.0

DO 280 KK-I,6

SUM-SUM+SS (II, KK) *T (KK, JJ)

PR (II, JJ) -SUM

295
300

DO 300 II'1,6

DO 300 JJ'l,6

SUM-0.0

DO 295 KK'I,6

SUM'SUM+T (KK, II) *PR (KK, JJ)

BIG (If, JJ)'SUM
END IF

INPUT MATERIAL TYPE AND FIBER DIRECTION ANGLES

IF (JNC.GE. i) THEN

WRITE (6, 9700) I,J,K

READ(5,9030) MNI(I,J,K)

WRITE(6,9899) MNI(I,J,K)

MN-MNI (I, J, K)

WRITE (6,9480)

READ(5,9000) ANGIA(I,J,K)

WRITE(6,9898) ANGIA (I, J, K)

AI-ANGIA (I, J, K)
WRITE (6, 9490)

READ(5,9000) ANGIB(I,J,K)
WRITE (6, 9898) ANGIB (I, J, K)

A2-ANGIB (I, J, K)

GET STRESS-STRAIN MATRIX (SS) IN MATL. COORD.

CALL GETSS(_4,MN, PROP,SS)

GET STRESS-STRAIN MATRIX (SS) IN GLOBAL

CALL TRANS2 (AI,A2,T)

DO 400 II-I,6

DO 400 JJ-l,6
SUM-0.0

DO 350 KK-1,6

(ONLY BRANCR)

SYSTEM

COORDINATES

(FIRST BRANCH)

SYSTEM

COORDINATES
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C
C GET

C

C

C GET

C

350 SL_4"SUM+SS (II, KK) *T (KK, JJ)

400 pR (II, JJ)'SUM

DO 450 II'1,6

DO 450 JJ'l,6
SUM'0 •0

DO 440 KK'I,6

440 SUM'SUM+T (KK, II) *PR (KK, JJ)

450 SSI(IZ, JJ)'SUM

INPUT MATERIAL TYPE AND FIBER

490
500

WRITE (6, 9710) I,J,K
READ (5, 9030) MN2 (I, J, K)

WRITE(6,9899) MN2(I,J,K)

MN-MN2 {I, J, K)
WRITE (6,9480)

READ (5, 9000) ANG2A (I, J, K)

WRITE(6,9898) ANG2A(I,J,K)

A1-ANG2A (I, J, K)

WRITE (6, 9490)

READ(5,9000) ANG2B(I,J,K)

WRITE (6, 9898) ANG2B (I, J, K)

A2-ANG2B (I, J, K)

STRESS-STRAIN MATRIX (SS) IN MATL.

CALL GETSS(MM, MN, PROP,SS)

STRESS-STRAIN MATRIX (SS) IN GLOBAL

CALL TRANS2 (AI,A2,T)

DO 500 II-l,6

DO 500 JJ-1,6

SUM-0.0

DO 490 KK-I,6

SUM-SUM+SS (II, KK) *T (KK, JJ)

PR (II, JJ) -SUM

DO 550 II-1,6
DO 550 JJ-1,6

SUM-0.0

DO 540 KK'I,6

SUM'SUM+T (KK, II) *PR (KK, JJ)

SS2 (II, JJ)'SUM

540

550

C

C INPUT FIRST BRANCH VOL. FRACTION AND

C

C
C GET

C

WRITE (6, 9720)

READ(5,9000) FVI(I,J,K)

WRITE(6,9898) FVI(I,J,K)

VI"FVI (I, J, K)
V2-1.0-Vl

WRITE (6, 9485)

READ(5,9000) AGNIA(I,J,K)

WRITE (6, 9898) AGNIA(I,J,K)

AI-AGNIA {I, J, K)

WRITE {6, 9495)
READ(5,9000) AGNIB(I,J,K)

WRITE (6, 9898) AGNIB (I, J, K)

A2-AGNIB (I, J, K)

STRESS-STRAIN MATRICES (SS) IN

CALL TRANSI(A1,A2,T)

DO 600 II-1,6

DO 600 JJ'l,6
SUM'0.0

DIRECTION ANGLES (SECOND BRANCH)

COORD. SYSTEM /

COORDINATES

INTERFACE NORMAL ANGLES

INTERFACIAL COORDINATES
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590

600

C

C

C

TUM-0.0

DO 590 KK-I,6

SUM-SUM+SSI (II, KK) *T (KK, JJ)

TUM-TUM+SS2 (II, KK) *T (KK, JJ)

RP (II, JJ) -SUM

PR (II, JJ)'TUM
DO 650 II'1,6

DO 650 JJ-1,6

SUM'0.0

TUM'0.0

DO 640 KK-I,6

SUM'SUM+T (KK, II) *RP (KK, JJ)

TUM-TUM+T (KK, II} *PR (KK, JJ)

SSS1 (II, JJ) -SUM

SSS2 (If, JJ) "TUM

640

650

DO REPLACEMENT MATERIAL SUBSTITUTION AT FIRST JUNCTION

CALL GETDD(SSSI,SSS2,VI,V2,DD1,DD2)

DO "/50 II'1,6

DO 750 JJ'l,6

DUM-0.0
DO 740 KK-1,6

740 DUM-DUM+VI*SSSI (II, KK) *DDI (KK, JJ) +V2*SSS2 (II,KK)*DD2 (KK, JJ)

750 DD (If, JJ)'DUM

C
C GET REPLACEMENT STRESS-STRAIN MATRIX (SS) IN GLOBAL COORDINATES

C
CALL TRANS2 (A1,A2,T)

DO 790 II'l,6

DO 790 JJ'l,6

SUM'0.0

DO 780 KK'I,6

780 SUM'SUM+DD (II, KK) *T (KK, JJ)

790 PR (II, JJ)'SUM

DO 850 II-i,6

DO 850 JJ'1,6
SUM'0.0

DO 840 KK-1,6

840 SUM-SUM+T (KK, II)*PR(KK, JJ)

850 BIG (II, JJ)-SUM

END IF

INPUT MATERIAL TYPE AND FIBER DIRECTION ANGLES (THIRD BRANCH)

IF (JNC.EQ. 2) THEN

WRITE (6,9715) I,J,K

READ(5,9030) MN3(I,J,K)

WRITE (6,9899) MN3 (I, J, K)

MN-MN3 (I, J, K)

WRITE (6, 9480)

READ (5, 9000) ANG3A (I, J, K)
WRITE (6,9898) ANG3A(I,J,K)

A1-ANG3A (I, J, K)

WRITE (6, 9490)

READ(5,9000) ANG3B(I,J,K)
WRITE (6,9898) ANG3B (I, J, K)

A2-ANG3B (I, J, K)

C

C GET STRESS-STRAIN MATRIX (SS) IN MATL. COORD. SYSTEM

C

C

C GET

C

CALL GETSS (MM,MN, PROP, SS)

STRESS-STRAIN MATRIX (SS) IN GLOBAL COORDINATES

CALL TRANS2(A1,A2,T)
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1350
1400

1440
1450

DO 1400 II'1,6

DO 1400 JJ'l,6
SUM-0.0

DO 1350 KK-1,6

SUM-SUM+SS (II, KK) *T (KK, JJ)

PR(II, JJ) -SUM

DO 1450 II-1,6

DO 1450 JJ-1, 6

SUM-0.0

DO 1440 KK'I,6

SUM'SUM+T (KKe II) *PR (KK, JJ)

SS1 (II, JJ) "SUM

DO 1550 II'l, 6

DO 1550 JJ-l,6

SS2 (II, JJ)'BIG(II, JJ)1550
C
C INPUT LAST BRANCH VOL. FRACTION AND

C

C

C GET

C

WRITE (6, 9720)

READ (5, 9000)

WRITE (6, 9898)

V1-FV2 (I, J, K)
V2-1.0-Yl

WRITE (6, 9480)

READ (5, 9000)

WRITE (6, 9898)

A1-AGN2A (I, J,

WRITE (6,9490)

READ (5, 9000)

WRITE (6,9898)

A2-AGN2B (I, J,

FV2 (I, J, K)

FV2 (I, J, K)

AGN2A (I, J, K)

AGN2A (I, J, K)

K)

AGN2B (I, J, K)

AGN2B (I, J, K)

K)

STRESS-STRAIN MATRICES (SS)

CALL TRANS1 (A1,A2,T)

DO 1600 II-1,6

DO 1600 JJ-1,6
SUM-0.0

TUM-0.0

DO 1590 KK-1,6

SUM-SUM+SSI (II, KK) *T (KK, JJ)

1590 TUM-TUM+SS2 (II, KK) *T (KK, JJ)

RP (II, JJ)-SUM

1600 PR (II, JJ) -TUM
DO 1650 II-1,6

DO 1650 JJ-1,6
SUM-0.0

TUM-0.0

DO 1640 KK-1,6

SUM'SUM+T (KK, I I )*RP (KK, JJ)

1640 TUM'TUM+T (KK, II) *PR (KK, JJ)

SSS1 (II, JJ) -SUM

1650 SSS2(II,JJ)-TUM
C

C DO

C

INTERFACE NORMAL ANGLES

IN INTERFACIAL COORDINATES

REPLACEMENT MATERIAL SUBSTITUTION AT SECOND JUNCTION

CALL GETDD (SSS1, SSS2, Vl, V2, DD1, DD2)

DO 1750 II'l, 6

DO 1750 JJ-1, 6
DUM-0.0

DO 1740 KK-1, 6

1740 DUM'DUM+VZ*SSS1 (II, KK) *DD1 (KK, JJ) +V2*SSS2 (II, KK) *DD2 (EX, JJ)
1750 DD (II, JJ)-DUM

C

C GET REPLACEMENT STRESS-STRAIN MATRIX (SS) IN GLOBAL COORDINATES
C
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CALL TRANS2 (A1,A2,T)

DO 1790 II'i,6

DO 1790 JJ'l,6

sm4-o .o
DO 1780 KK'I,6

1780 SUM-SUM+DD(II,KK) *T (KK, JJ)

1790 PR(II, JJ)'SUM
DO 1850 II'l,6

DO 1850 JJ-1,6

SUM-0.0

DO 1840 KK'I,6

1840 SUM'SUM+T (KK, II) *PR (KK, JJ)

1850 BIG (II, JJ}'SUM

END IF

1900 CONTINUE

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C BEGIN INTEGRATION SCHEME TO GET ELEMENT STIFFNESS MATRIX C

C INNER DO LOOP OVER EACH INTEGRATION POINT BEGINS HERE C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
DO 2000 II'1,2

DO 2000 JJ'l,2

DO 2000 KK'I,2

C
DO 1920 III'l,6

DO 1920 JJJ'l,24

1920 BM(III,JJJ)'0.0

C
C SUBCELL GEOMETRY CALCULATIONS

C
X-0.57735*AA

IF(II.EQ.1) X'-X
Y-0.57735*BB

IF(JJ.EQ.1) Y'-Y
Z-0.57735"CC

IF(KK.EQ.1) Z'-Z

C
C DO
C

GAUSSIAN INTEGRATION SCHEME

CALL GETB(AA, BB,CC, X,Y,Z, BM)

DO 1930 III-1,6

DO 1930 JJJ-1,24

DB(III,JJJ)-0.0

DO 1930 KI<K-1,6

1930 DB(III,JJJ)-DB(III,JJJ)+BIG(III,KKK)*BM(KKK, JJJ)

DO 1950 III-i,24

DO 1950 JJJ-1,24

DO 1950 KKK-1,6

1950 KS(III,JJJ)-KS(III,JJJ)+BM(KKK, III)*DB(KKK, JJJ)

2000 CONTINUE
DO 2040 III-1,24

DO 2040 JJJ-1,24

2040 KS(III,JJJ)-KS(III, JJJ)*VOL/8.0

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C END OF INNER DO LOOP OVER INTEGRATION POINTS C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
C PUT SMALL STIF. MATRIX (KS) INTO BIG STIF. MATRIX (KB)

C
DO 2050 II-1,24

DO 2050 JJ-l,24

2050 SK(II,JJ)-KS(II,JJ)
LCIlI-llNBZ+II*INBY+II*II-1I+INBZ+ll*IJ-II+IK-I))*3+I

LC(7)-LC(1)+(NBZ+I)*3
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22O0

2300
2400

C

LC (13) -LC (I) + (NBZ+I) * (NB¥+I) * 3

LC (19) -LC (13) + (NBZ+I) *3
DO 2200 KK-2,6

LC (KK) -LC (F,K- 1) +1

LC (KK+6) -LC (F,.K+5) +I
LC (KK+12) -LC (KK+11) +I
LC (KK+IS) -LC (KK+IT) +I

DO 2300 II-I,24

III-LC (II)

DO 2300 JJ-1,24

JJJ-LC (JJ)

KB (III, JJJ)-KB (III, JJJ) +SK (II, JJ)

CONTINUE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C END OF OUTER DO LOOP ON NO.LOF ELEMENTS IN UNIT CELL C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
C CALC. DISP. VECTORS FOR 6 HOMOGENEOUS UNIT STRAIN CASES

C
DO 2420 I-I,NBX+I

DO 2420 J-1,NBY+I

DO 2420 K-I,NBZ+I
L-((NBZ+I)*(NBY+I)*(I-I)+(NBZ+I)*(J-I}+(K-I))*3

UVW(L+I,I)-FDX(I)*XL/100.0

UVW(L+2,2)-FDY(J)*YLI100.0
UVW(L+3,3)-FDZ(K)*ZL/100.0

UVW(L+2,4)-FDZ(K)*ZL/100.0

UVW(L+I,5)-FDZ(K)*ZLI100.0

2420 UVW(L+I,6)-FDY(J)*YL/100.0

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C BEGIN NORMAL STRAIN ANALYSIS C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
GO TO 2460

2440 ISYM-1

DO 2445 I-1,MMM

DO 2445 J-1,MMM

2445 KN(I,J)-0.0
DO 2447 I-I,MI_4

DO 2447 J-I,NNN

2447 KM(I,J)-0.0

DO 2450 I-I,NP

DO 2450 J-l,7

FB(I,J)-0.0

CONTINUE

2450

2460

C

C USE

C

2500
2510

C
C USE
C

ZERO FORCE CONDITIONS TO ELIMINATE INNER FORCES

IN-0

IF((NBX.GT.I).AND. (NBY.GT. I) .AND. (NBZ.GT.I)) THEN

DO 2510 I-2,NBX

DO 2510 J-2,NBY

DO 2510 K-2,NBZ

L- ((NBZ÷I) * (NBY+I) * (I-1) ÷ (NBZ+I) * (J-l) + (K-l)) *3

DO 2500 M-I,NP

KM (IN+I, M)-KB (L÷I, M)
IO4(IN÷2, M) -KB (L+2, M)

KM (IN÷3, M) -KB (L+3, M)
IN- IN+3

END IF

ZERO FORCE B.C.S ON Z-NORMAL FACES

IF((NBX.GT.I).AND.(NBY.GT.I)) THEN

DO 2530 I-2,NBX
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J , .'.

2525
2530

C
C USE
C

2550
2555

2565

2570

C
C USE
C

2580
2585

2595
2600

C
C USE

C

DO 2530 J'2,NBY

L-((NBZ+I)*(NBY+I)*(I-I)+(NBZ+I)*(J-I))*3
LL'L+NBZ*3

DO 2525 M'I,NP

KM(IN+I,M)'KB(L+I,M)

KM(IN+2,M)'KB(L+2,M)

KM(IN+3,M)'I_B(LL+I,M)

KM(IN+4,M)'KB(LL+2,M)
IN'IN+4

END IF

ZERO FORCE B.C.S ON Y-NORMAL FACES

IF((ZSYM.EQ.0).AND.(NBX.GT.I).AND.(NBZ.GT.I}} THEN

DO 2555 I'2,NBX

DO 2555 K'2,NBZ

L'((NBZ+I)*(NBY+I)*(I-1)+(K-1))*3

LL'L+(NBZ+I)*(NB¥)*3

DO 2550 M'I,NP

KM(IN+I,M)'KB(L+I,M)

KM(IN+2,M)'KB(L+3,M)

KM(IN+3,M)'KB(LL+I,M)

KM(IN+4,M)'KB(LL+3,M)
IN'IN+4

END IF

IF((ISYM.EQ.I).AND.(NBX.GT.1).AND.(NBZ.GT.0)) THEN

DO 2570 I'2,NBX

DO 2570 K'1,NBZ+I

L'((NBZ+I)*(NBY+I)*(I-I)+(K-1))*3

LL'L+(NBZ+I]*(NB¥)*3

DO 2565 M'I,NP

KM(IN+I,M)'KB(L+2,M)

KM(IN+2,M)'KB(LL+2,M)
IN'IN+2

END IF

ZERO FORCE B.C.S ON X-NORMAL FACES

IF((ISYM.EQ.0).AND.(NBY.GT.1).AND.(NBZ.GT.I)) THEN

DO 2585 J'2,NBY

DO 2585 K'2,NBZ

L'((NBZ+I)'(J-I)+(K-I))*3

LL'L+((NBZ+I)*(NBY+I)*NBX)*3

DO 2580 M'I,NP

KM(IN+I,M)'KB(L+2,M)

KM(IN+2,M)'KB(L+3,M)

KM(IN+3,M)'KB(LL+2,H)

KM(IN+4,M)'KB(LL+3,M)
IN'IN+4

END IF

IF((ISYH.EQ.I).AND.(NBY.GT.1).AND.(NBZ.GT.0)) THEN

DO 2600 J'2,NB¥

DO 2600 K'I,NBZ+I

L'((NBZ+I)*(J-I)+(K-I))*3

LL'L+((NBZ+I)*(NBY+I)*NBX)*3

DO 2595 M'I,NP

KM(IN+I,M)'KB(L+I,M)

KM(IN+2,M)'KB(LL+I,M)
IN'IN+2

END IF

ZERO FORCE B.C. ON Z-PARALLEL EDGES

IF((ISYH.EQ.0).AND.(NBZ.GT.I)) THEN

DO 2630 K'2,NBZ

L" (K-I) *3

FII



°.

2620
2630

C

C USE
C

2670
2680

C

C USE

C

2700
2710

LL-L+(NBZ+I)*NBY*3

LLL-L+(NBZ+I)*(NBY+I)*NBX*3
LLLL-LL+(NBZ+I)*(NBY+I)*NBX*3

DO 2620 M'I,NP

KM(IN+I,M)-KB(L+3,M)+KB(LL+3,M)+KB(LLL+3,M)+KB(LLLL+3,M)

IN'IN+I

END IF

ZERO FORCE B.C. ON Y-PARALLEL EDGES

IF((ISYM.EO.0).AND.(NBY.GT'I)} THEN

DO 2680 J'2,NBY

L" (NBZ+I) * (J-l) *3

LL'L+NBZ*3
LLL'L+ (NBZ+I) * (NBY+I) *NBX*3

LLLL'LL+ (NBZ+I) * (NBY+I)'*.NBX*3

DO 2670 M'I,NP

KM (IN+l, M) -KB (L+2, M) +KB (LL+2, M) +KB (LLL+2, M) +KB (LLLL+2, M)

IN'IN+I

END IF

ZERO FORCE B.C. ON X-PARALLEL EDGES

IF((ISYM.EO.0).AND.(NBX.GT.1)) THEN

DO 2710 I-2,NBX

L-(NBZ+I)*(NBY+I)*(I-1)*3
LL-L+NBZ*3

LLL-5+(NBZ+I)*NBY*3
LLLL'LLL+NBZ*3

DO 2700 M'I,NP
KM(IN+I,M)-KB(L+I,M)+KB(LL+I,M)+KB(LLL+I,M}+KB(LLLL+I,M)

IN-IN+I

END IF

C

C
IF(IJ.LT.1) GO TO 2745

9085 FORMAT(IH ,6F12.0)

DO 2730 I'l,IJ

DO 2730 J'l,7

2730 FS(I,J)'0.0

DO 2740 I'I,6
DO 2735 J'I,IN

DO 2735 K'I,NP

2735 FS (J, 7) -FS (J, 7)+KM(J,K)*UVW(K,I)

DO 2740 J'l,IJ

FS (J, I)'FS (J, 7)

2740 FS (J, 7)'0.0

2745 CONTINUE
INN'IN

IN'0

C
C RETAIN INTERNAL DISPLACEMENTS

C
IF((NBX.GT.1).AND.(NBY.GT.1).AND.(NBZ.GT.I)} THEN

DO 2755 I'2,NBX
DO 2755 J'2,NBY

DO 2755 K'2,NBZ
L-((NBZ+I)*(NBY+I)*(I-1)+(NBZ+I)*(J-I)+(K-I))*3

DO 2750 M'I,INN

KN (M, IN+I )-KM (M, L+I )

KN (M, IN+2 )-KM (M, L+2 )

2750 KN(M, IN+3)'KM(M,L+3)

2755 IN'IN+3
END IF

C

IJ'IN

FI2



USE

2765

2770

C

C USE

C

2777

2779

2784

2?86

C

C USE

C

2790
2792

2795
2796

C
C USE

DISPLACEMENT B.C.S OH Z-NORMAL FACES

IF((NBX.GT.I).AND.(NBY.GT.1)) THEN

DO 2770 I-2,NBX

DO 2770 J-2,NB¥
L.((NBZ+I)*(NBY+I)*(I-1)+(NBZ+I)*(J-1))*3

LL-L+NBZ*3

DO 2765 M-I,INN

KN (M, IN÷I )-104 (M, L+I )

KN (M, IN÷2 )-104 (M, L+2 )

KN(M, IN+3)-KM (M, LL+I)
KN (M, IN+4 )-KM (M, LL+2)

IN-IN÷4

END IF

DISPLACEMENT B.C.S OH Y-NORMAL FACES

IF((ISYM.EQ.0).AND.(NBX.GT.1).AND.(NBZ.GT.I)) THEN

DO 2779 I-2,NBX

DO 2779 K-2,NBZ

L-((NBZ+I)*(NBY+I)*(I-I)÷(K-1))*3

LL-L÷(NBZ+I)*(NH¥)*3

DO 2777 M-I,INN

KN(M, IN+I)-KM (M, L+I)

KN (M, IN+2) -KM (M, L+3}

KN (M, IN+3) -KM (M, LL+I)

KN (M, IN+4 )-KM (M, LL+3)

IN-IN+4
END IF

IF((ISYM.EQ.I).AND.(NBX.GT.I).AND.(NBZ.GT.0)) THEN

DO 2786 I-2,NBX
DO 2786 K-I,NBZ÷I

L-( (NBZ+I)* (NB¥+l)* (I-1)+ (K-I))*3

LL-L÷ (NBZ+I) * (NB¥) *3

DO 2784 M-I,INN

KN(M, IN+I)-KM (M, L+2)

KN (M, IN÷2 )-KM (M, LL+2)

IN-IN+2

END IF

DISPLACEMENT B.C.S ON X-NORMAL FACES

IF((ISYM.EQ.0).AND.(NBY.GT.1).AND.(NBZ.GT.I)) THEN

DO 2792 J-2,NB¥
DO 2792 K-2,NBZ

L-((NBZ+I)*(J-1)+(K-I))*3
LL-L÷((NBZ+I)*(NBY+I)*NBX)*3

DO 2790 M-I,INN

KN(M, IN+I)-KM(M,L+2)

KN (M, IN+2 )-KM (M, L+3 )

KN (M, IN+3) -KM (M, LL+2)

KN (M, IN+4 )-KM (M, LL+3)

IN-IN+4

END IF

IF((ISYM.EQ.I).AND.(NBY.GT.1).AND.(NBZ.GT.0)) THEN

DO 2796 J-2,NBY

DO 2796 K-I,NBZ+I

L-((NBZ+I)*(J-1)+(K-I))*3

LL-L÷((NBZ÷I)*(NBY+I)*NBX)*3

DO 2795 M-I,INN

KN(M, IN÷I)-KM(M,L+I)

KN(M, IN+2)-KM(M, LL+I)
IN-IN+2

END IF

DISPLACEMENT B.C. ON Z-PARALLEL EDGES

FI3



C

2800

2805

C
C USE
C

2830
2840

C
C USE
C

2870
2880

C
C GET

C

C
C GET

C

C

C ON
C

2900

2902

2905

IF((ISYM.EQ.0).AND.(NBZ.GT.I)) THEN
DO 2805 K-2,NBZ

L- (K-I) *3
LL-L+(NBZ+I)*NBY*3

LLL-L+(NBZ+I)*(NBY+I)*NBX*3

LLLL-LL+(NBZ+I)*(NBY+I)*NBX*3

DO 2800 M-I,INN

KN(M, IN+I)-KM(M,L+3)+KM(M, LL+3)+KM(M, LLL+3)+KM(M, LLLL+3)
IN-IN+I

END IF

DISPLACEMENT B.C. ON Y-PARALLEL EDGES

IF((ISYM.EQ.0).AND.(NBY.GT.I)) THEN

DO 2840 J-2,NBY

L-(NBZ+I)*(J-I)*3
LL-L+NBZ*3

LLL-L+(NBZ+I)*(NBY+I)*NBX*3

LLLL-LL+(NBZ+I)*(NBY+I)*NBX*3

DO 2830 M-I,INN

KN(M, IN+I)-KM(M,L+2)+KM(M, LL+2)+KM(M, LLL+2)+KM(M, LLLL+2)
IN-IN+I

END IF

DISPLACEMENT B.C. ON X-PARALLEL EDGES

IF((ISYH.EQ.0).AND.(NBX.GT.I)) THEN
DO 2880 I-2,NBX

L-(NBZ+I)*(NB¥+I)*(I-1)*3
LL-L+NBZ*3

LLL-L+(NBZ+I)*NBY*3
LLLL-LLL+NBZ*3

DO 2870 M-I,INN

KN(H, IN+I)'KM(M,L+I)÷KM(M, LL+I)+KM(M, LLL+I)+KM(M, LLLL+I)
IN-IN+I
END IF

UNCONSTRAINED DISPLACEMENTS FOR UNIT STRAIN CASES

CALL MATINV(KN, I_LH, IJ,FS,7,7,DET)

A COMPLETE SET OF TOTAL DISPLACEMENTS

IN'0

INTERIOR

IF((NBX.GT.1).AND.(NBY.GT.I).AND.(NBZ.GT.1)) THEN
DO 2905 I-2,NBX

DO 2905 J-2,NB¥

DO 2905 K-2,NBZ

L- ( (NBZ+I)* (NBY+I)* (I-I)+ (NBZ+I)* (J-l) +(K-1))'3
IF(ISYM.EQ.I) GO TO 2902

DO 2900 M-I,3

UVW (L+I, M) -UVW (L+I, M) -FS (IN+l, H)
UVW (L+2, M) -UVW (L+2, M) -FS (IN+2, M )

UVW (L+3, M) -UVW (L+3, M) -FS (IN+3, M)
GO TO 2905

CONTINUE
M-6

UVW (L+I, M) -UVW (L+I, M) -FS (IN+I, M)

UVW (L+2, M) -UVW (L+2, M) -FS (IN+2, M)

OVW (L+3, M) o.UVW (L+3, M) -FS (IN+3, M)
IN-IN+3

END IF

FI4



C

C ON Z-NORMAL FACES

C
IF ((NBX. GT. I ). AND. (NBY. GT. I) ) THEN

DO 2930 I-2,NBX

DO 2930 J-2,NBY

L-((NBZ+I) * (NB¥+I} * {I-l) + (NBZ+I)* (J-l) }'3

LL-L+NBZ*3

IF(ISYM.EQ.I) GO TO 2925

DO 2920 M-I,3

UVW (L+I, M) -UVW (L+I, M) -FS (IN+I, M)

UVW (L+2, M) -UVW (L+2, M) -FS (IN+2, M )

UVW (LL+ 1, M) -UVW (LL+I, M) -FS (IN÷3, M)

2920 UVW (LL÷2, M) -UVW (LL÷2, M) -FS (IN+4, M)
GO TO 2930

2925 CONTINUE

M-6

UVW (L+I, M)-UVW (L+I, M) -FS (IN+I,M)
UVW (L+2, M) -UVW (L+2, M) -FS (IN+2,M)

UVW (LL+I, M) -UVW (LL+ I, M) -FS (IN+3, H)
UVW (LL+2, M) -UVW (LL+2, M) -FS (IN+4, M)

2930 IN-IN+4

END IF

C
C ON Y-NORMAL FACES

C

.IF( (ISYM.EQ.0) .AND. (NBX.GT.I).AND. (NBZ.GT.I)) THEN

DO 2950 I-2,NBX

DO 2950 K-2,NBZ

L- ((NBZ+I)" (NBY+I) * (I-1 )+ (K-1) )*3

LL-L+ (NBZ+I) * (NBY) *3

DO 2945 M-I,3

UVW (L+I, M) -UVW (L+I, M) -FS (IN+I,M)

UVW (L+3, M) -UVW (L+3, M) -FS (IN+2, M)

UVW (LL+I, H) -UVW (LL+I, M) -FS (IN÷3, M)

2945 UVW (LL÷3, H) -UVW (LL+3, M) -FS (IN+4, M)

2950 IN-IN+4

END IF
IF((ISYM.EO.I).AND.(NBX.GT.I).AND.(NHZ.GT.0}) THEN

DO 2960 I-2,NBX

DO 2960 K-I,NBZ+I

L-( (NBZ+I)* (NBY+I)* (I-l) + (K-1))'3

LL-L+ (NBZ+I) * (NBY) *3

M-6

UVW (L÷2, M) -UVW (L+2, M) -FS (IN÷I, M)

UVW (LL+ 2, M) -UVW (LL÷2, M) -FS (IN+2, M )
2960 IN-IN+2

END IF

C

C ON X-NORMAL FACES

C

IF( (ISYM.EQ.0) .AND. (NBY.GT.1).AND. (NBZ.GT.I)) THEN

DO 2980 J-2,NBY

DO 2980 K-2,NBZ
L-((NBZ+I)* (J-l) + (K-I))'3

LL-L÷ ((NBZ+I) * {NBY+I) *NBX) *3

DO 2975 H-I,3

UVW (L+2, M) -UVW (L+2, M) -FS (IN+I, M)

UVW (L+3, M) -UVW (L+3, M) -FS (IN+2, M)

UVW (LL÷2, M) -UVW (LL+2, M) -FS (IN+3, M)

2975 UVW(LL+3,M)-UVW(LL+3,M)-FS(IN+4,M)

2980 IN-IN+4
END IF

IF ( (ISYH. EQ. I ). AND. (NBY. GT. 1). AND. (NBZ. GT. 0 ) ) THEN

DO 2996 J-2,NBY

DO 2996 K-1,NBZ+I

F15



L-((NBZ+I) * (J-l)+ (K-l))'3

LL-L+ ((NBZ+I) * (NB¥+I) *NBX) *3

M-6

UVW (L+I, M) -UVW (L+I, M) -FS (IN+I, M)

UVW (LL+I, M) -UVW (LL+ i, M) -FS (IN+2, M)

2996 IN-IN+2
END IF

C

C ON Z-PARALLEL EDGES

C
IF ( (XSYM. EQ. 0) .AND. (NBZ. GT. I) ) THEN

DO 3010 K-2,NBZ

L- (K-I) *3

LL-L+ (NBZ+I) *NBY* 3
LLL-L+ (NBZ+I) * (NBY+I) *NBX*3

LLLL-LL+ (NBZ+I) * (NB¥+I) *SEX*3

DO 3000 M-1,3

UVW (L+3, M) -UVW (L+3, M) -FS (IN+I, M)

UVW (LL+3, M) -UVW (LL+3, M) -FS (IN+I, M)

UVW (LLL+ 3, M) -UVW (LLL+3, M) -FS (IN+I, M)

3000 UVW (LLLL+3, M) -UVW (LLLL+3, M) -FS (IN+l, M)

3010 IN-IN+I
END IF

C
C OH
C

3030
3040

C

C OH
C

Y-PARALLEL EDGES

IF((ISYM.EQ.0).AND.(NBY.GT.I)) THEN

DO 3040 J-2,NBY

L-(NBZ+I)*(J-I)*3

LL-L+NBZ*3

LLL-L+(NBZ+I)*(NBY+I)*NBX*3

LLLL-LL+(NBZ+I)*(NBY+I)tNBX*3

DO 3030 M-1,3

UVW(L+2,M)-UVW(L+2,M)-FS(IN÷I,M)

UVW(LL+2,M)-UVW(LL+2,M)-FS(IN+I,M)

UVW(LLL+2,M)-UVW(LLL+2,M)-FS(IN+I,M)
UVW(LLLL+2,M)-UVW(LLLL+2,M)-FS(IN÷I,M)
IN-IN+I

END IF

X-PARALLEL EDGES

IF((ISYM.EQ.0).AND.(NBX.GT.I)) THEN

DO 3070 I-2,NBX

L-(NBZ+I)*(NB¥+I)*(I-I)*3

LL-L+NBZ*3

LLL-L+(NBZ+I}*NBY*3
LLLL-LLL+NBZ*3

DO 3060 M-1,3

UVW(L+I,M)-UVW(L+I,M)-FS(IN+I,H)

UVW(LL+I,M)-UVW(LL+I,M)-FS(IN+I,M)

UVW(LLL+I,M)-UVW(LLL÷I,M)-FS(IN+I,M}

3060 UVW(LLLL÷I,M)-UVW(LLLL+I,M)-FS(IN+I,M)
3070 IN-IN+I

END IF

IF(ISYM.EQ.0) GO TO 2440

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C BEGIN ((GAJV_IA-YZ) - 1.0) SHEAR STRAIN ANALYSIS C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
DO 3145 I'I,M_94

DO 3145 J'I,MMM

3145 KN(I,J)'0.0

DO 3147 I'I,M]4_

DO 3147 J'I,NNN

FI6



°..

3147

3150
C

C USE

C

3155

3160

3165

C
C USE

C

3220

3230

3240
C

C USE

C

3250

3255

3260

C

C USE

C

3270
3280
3290
3320

C

C
C GET

C

KM(I, J)'0.0

DO 3150 I'I,NP

DO 3150 J-1,7

FB(I, J)-0.0

ZERO FORCE CONDITIONS TO ELIMINATE INNER FORCES

IN-0

IF((NBX.LE.1).OR.(NBY.LE.1).OR.(NBZ.LE.1)) GO TO 3165

DO 3160 I-2,NBX

DO 3160 J-2,NBY

DO 3160 K-2,NBZ

L-((NBZ+I)*(NBY+I)*(I-I)+(NBZ+I)*(J-I)+(K-I))*3

DO 3155 M-1,NP

KM(IN+I,M)-KB(L+I,M)

KM(IN+2,M)-KB(L+2,M)

KM(IN÷3,M)-KB(L+3,M)

IN-IN+3

CONTINUE

ZERO FORCE B.C.S ON Z-NORMAL FACES

IF((NBX.LE.0).OR.(NBY.LE.1)) GO TO 3240

DO 3230 I-I,NBX+I
DO 3230 J-2,NBY

L-((NBZ+I)*(NBY+I)*(I-1)+(NBZ+I)*(J-1))*3
LL-L+NBZ*3

DO 3220 M-I,NP

KM(IN÷I,M)-KB(L+3,M)

KM(IN+2,M)-KB(LL+3,M)
IN-IN+2

CONTINUE

ZERO FORCE B.C.S ON Y-NORMAL FACES

IF((NBX.LE.0).OR.(NBZ.LE.1))GO TO 3260

DO 3255 I-1,NBX+I

DO 3255 K-2,NBZ

L-((NBZ+I)*(NBY+I)*(I-I)+(K-I))*3

LL-L+(NBZ+I}*(NBY)*3

DO 3250 M-1,NP

KM(IN÷I,M)-KB(L+2,M)

KM(IN+2,M)-KB(LL+2,M)
IN-IN+2

CONTINUE

ZERO FORCE B.C.S ON X-NORMAL FACES

ZF((NBY.LE.1).OR.(NBZ.LE.1)) GO TO 3290

DO 3280 J-2,NB¥

DO 3280 K-2,NBZ

L-((NBZ+I)*(J-I)+(K-I))*3

LL-L+((NBZ+I)e(NBY+I)*NBX)*3

DO 3270 M-I,NP

KM{IN+I,M)-KB(L+2,M)

KM(IN+2,M)-KB(L+3,M)

KM(IN+3,M)-KB(LL+2,M)

KM(IN+4,M)-KB(LL+3,M)
IN-IN+4

CONTINUE

CONTINUE

IJ-IN

UNCONSTRAINED NODAL FORCES

FIT



. : ..

3330

3335

3340

3345

C

C RETAIN INTERNAL

C
INN-IN

IN-0

IF(IJ.LT.I)

IF(IJ.LT.I) GO TO 3345

DO 3330 I-1,IJ
J-7

FS (I, J)-0.0

I-4

DO 3335 J-I,IN

DO 3335 K-1,NP

FS (J, 7) -FS (J, 7) +KM (J, K) *UVW (K, I)

DO 3340 J-l,IJ

FS (J, I)-FS (J, 7)

FS(J, 7)-0.0

CONTINUE

DISPLACEMENTS

GO TO 3595

IF((NBX.LE.I).OR.(NBY.LE.1).OR.(NBZ.LE.I)) GO TO 3400

DO 3390 I-2,NBX

DO 3390 J-2,NB¥

DO 3390 K-2,NBZ

L- ((NBZ+I) * (NB¥+I) * (I-1) + (NBZ+I) * (J-l) + (K-l)) *3

DO 3380 M-I,INN

KN (M, IN+l) -KM (M, L+I )

KN (M, IN+2} -KM (M, L÷2)

3380 KN(M, IN+3)-KM(M,L+3)

3390 IN-IN+3

3400 CONTINUE

C

C USE

C

3420

3430
3440

C

C USE
C

3470

3475

3480

C

C USE

C

DISPLACEMENT B.C.S ON Z-NORMAL FACES

IF((NBX.LE.0).OR.(NBY.LE.I)) GO TO 3440

DO 3430 I-I,NBX÷I
DO 3430 J-2,NB¥

L-((NBZ+I)*(NBY÷I)*(I-1)+(NBZ+I)*(J-I))*3

LL-L+NBZ*3

DO 3420 M-I,INN

KN(M, IN+I)-KM(M,L+3)

KN(M, IN+2)-KM(M, LL+3)
IN-IN+2

CONTINUE

DISPLACEMENT B.C.S ON Y-NORMAL FACES

IF((NBX.LE.0).OR.(NBZ.LE.1)) GO TO 3480

DO 3475 I-I,NBX+I

DO 3475 K-2,NBZ
L-((NBZ+I)*(NB¥+I)*(I-1)÷(K-1))*3

LL-L÷(NBZ+I)*(NB¥)*3
DO 3470 M-I,INN

KN(M, IN+I)-KM(M,L+2)

KN(M, IN+2)-KM(M, LL÷2)

IN-IN+2

CONTINUE

DISPLACEMENT B.C.S ON X-NORMAL FACES

IF((NBY.LE.I).OR. (NBZ.LE.1)} GO TO 3494

DO 3492 J-2,NBY

DO 3492 K-2,NBZ
L-((NBZ+I) * (J-l) ÷ (K-l)) *3

LL-L+ ((NBZ÷I) * (NBY+I) *NBX) *3

DO 3490 M-I,INN

KN(M, IN+I)-KM (M, L+2)

KN (M, IN+2) -KM (M, L+3)

FI_



3490
3492
3494

C
3595

C
C GET
C

C
C
C
C
C

KN(M, IN+3)'KM(M, LL+2)
KN(M, IN+4)'I(M(M, LL+3)

IN'IN÷4

CONTINUE

CONTINUE

UNCONSTRAINED DISPLACEMENTS FOR UNIT STRAIN CASES

IJ'IN

CALL MATINV(KN, i_H, IJ, FS,7,7,DET)

GET A COMPLETE SET OF TOTAL DISPLACEMENTS

ON INTERIOR

3605

3610

C

C ON Z-NORMAL FACES

C

IN'0

IF((NBX.LE.1).OR.(NBY.LE.1).OR.(NBZ.LE.I)) GO TO 3610

DO 3605 I'2,NBX

DO 3605 J'2,NBY

DO 3605 K'2,NBZ

L" ( (NBZ+I)* (NBY+I)* (I-I}+ (NBZ+I)* (J-1)+(K-I))'3

M'4

UVW(L+I,M)'UVW(L+I,M)-FS(IN+I,M)

UVW (L+2, M) -UVW (L+ 2, M) -FS (IN+2, M)

UVW (L+3, M) "UVW (L+3, M) -FS (IN+3, M)
IN'IN+3

CONTINUE

3630
3640

C
C ON Y-NORMAL FACES

C

IF((NBX.LE.0).OR.(NBY.LE.I)) GO TO 3640

DO 3630 I'I,NBX+I

DO 3630 J'2,NB¥

L'((NBZ+I)*(NBY+I)*(I-1)+(NBZ+I)*(J-1))*3
LL'L*NBZ*3

M'4

UVW(L+3,M}'UVW(L+3,M)-FS(IN+I,M)

UVW(LL+3,M)'UVW(LL+3,M)-FS(IN+2,M)
IN'IN+2

CONTINUE

3680
3690

C

IF((NBX.LE.0).OR.(NBZ.LE.I)) GO TO

DO 3680 I-1,NBX+I
DO 3680 K-2,NBZ

L-((NBZ+I)*(NB¥+I)*(I-I)+(K-1))*3

LL-L+(NBZ+I)*(NBY)*3

M-4

UVW(L+2,M)-UVW(L+2,M)-FS(IN+I,M)

UVW(LL+2,M)-UVW(LL+2,M)-FS(IN+2,M)
IN-IN+2

CONTINUE

C ON X-NORMAL FACES

C

IF((NBY.LE.I).OR. (NBZ.LE.1)) GO TO

DO 3780 J-2,NB¥

DO 3780 K-2,NBZ
L-((NBZ+I)* (J-l) + (K-l)) *3

LL-L+ ((NBZ+I) * (NB¥+I) *NBX) *3
M-4

UVW (L+2, M) -UVW (L÷2, M) -FS (IN+I, M)

UVW (L+3, M) -UVW (L+3, M) -FS (IN+2, M)

UVW (LL+2, M) -UVW (LL+2, M) -FS (IN+3, M)

3690

3790

Fig



3775 UVN (LL+3, M) -UVW (LL+3, M) -FS ( IN+4, M]
3780 ZN,'ZN+4
3790 CONTINUE

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C BEGIN ((GA/_4A-XZ) - 1.0) SHEAR STRAIN ANALYSIS C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
DO 3845 I'l,MI_4

DO 3845 J'I,MMM

3845 KN(I, J)'0.0

DO 3847 I'l,MI_4

DO 3847 J'Z,NNN

3847 KM(I, J)'0.0
DO 3850 I'I,NP

DO 3850 J'1,7

3850 FB(I, J)'0.0
C

C USE

C

3855

3860

3865

C

C USE

C

3920
3930
3940

C
C USE

C

3970
3980

4050
C

C USE

C

ZERO FORCE CONDITIONS TO ELIMINATE INNER FORCES

IN-0

IF((NBX.LE.1).OR.(NBY.LE.I).OR.(NBZ.LE.I)) GO TO 3865

DO 3860 I-2,NBX

DO 3860 J-2,NBY

DO 3860 K-2,NBZ

L-((NBZ+I)*(NBY+I)*(I-1)+(NBZ+I)*(J-I)+(K-I))*3

DO 3855 M-1,NP

KM(IN+I,M)-KB(L+I,M)

KM(IN+2,M)-KB(L+2,M)

KM(IN+3,H)-KB(L+3,M)
IN-IN+3

CONTINUE

ZERO FORCE B.C.S ON Z-NORMAL FACES

IF((NBX.LE.1).OR.(NBY.LE.0)) GO TO 3940

DO 3930 I-2,NBX

DO 3930 J-1,NBY+I

L-((NBZ+I)*(NBY+I)*(I-I)+(NBZ+I)*(J-I))*3
LL-L+NBZ*3

DO 3920 M-1,NP

KM(IN+I,M)-KB(L+3,H)

KM(IN+2,M)-KB(LL+3,M)
IN-IN+2

CONTINUE

ZERO FORCE B.C.S ON Y-NORMAL FACES

IF((NBX.LE.I).OR. (NBZ.LE.I)] GO TO

DO 3980 I-2,NBX

DO 3980 K-2, NBZ

L- ((NBZ+I)* (NBY+I)* (I-1) + (K-l))'3
LL-L+ (NBZ+I) * (NB¥) *3

DO 3970 M-1,NP
KM (IN+I, M)-KB (L+I, M)

]04 (IN+2, M) -KB (L+3, M)

I(M (IN+3, M) -lq_ (LL+ i, M)

KM (IN+4, M) -KB (LL+3, M)
IN-IN+4

CONTINUE

4050

ZERO FORCE B.C.S ON X-NORMAL FACES

IF((NBY.LE.0).OR.(NBZ.LE.1))

DO 4080 J-I,NB¥+I

DO 4080 K-2,NBZ

GO TO 4150
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4070
4080
4150
4320

C

C
C GET
C

4330

4335

L-((NBZ+I)*(J-1)+(K-I))*3
LL-L+((NBZ+I)*(NBY+I)*NBX)*3
DO 4070 M-1,NP

KM(IN+I,M)-KB(L+I,H)
IOI(IN+2,M)-KB(LL+I,M)
IN'IN+2
CONTINUE
CONTINUE

IJ'IN

UNCONSTRAINED NODAL FORCES

4340
4345

C
C RETAIN INTERNAL DISPLACEMENTS
C

4380
4390
4400

C
C USE
C

4420
4430
4440

C
C USE
C

IF(IJ.LT.I) GO TO 4345
DO 4330 I'l,IJ
J-7

FS (I,J)'0.0
I'5

DO 4335 J'I,IN
DO 4335 K'I,NP
FS(J, 7)'FS (J, ?)+KM (J, K) *UVW (K, I)
DO 4340 J-l,IJ
FS (J, I)-FS (J,7)
FS (J,7)'0.0 "
CONTINUE

INN'IN
IN'0

ZF(IJ.LT.I) GO TO 4595
IF((NBX.LE.1).OR.(NBY.LE.1).OR.(NBZ.LE.I)) GO TO 4400
DO 4390 I'2,NBX
DO 4390 J'2,NBY
DO 4390 K'2,NBZ
L" ((NBZ+I)* (NBY+I)* (I-1)* (NBZ+I)* (J-l) + (K-I))'3
DO 4380 H-I,INN

KN (M, IN+I )-Kid(H,L+I )
KN (H, IN+2 )-1424(M,L+2 )
KN (H, IN+3 )"104(M,L+3 )
IN'IN+3

CONTINUE

DISPLACEMENT B.C.S ON Z-NORMAL FACES

ZF((NBX.LE.1).OR.(NBY.LE.0)) GO TO 4440
DO 4430 I'2,NBX
DO 4430 J'I,NBY+I
L'((NBZ+I)*(NBY+I)*(I-I)+(NBZ+I)*(J-I))*3
LL'L+NBZ*3
DO 4420 M'I,INN

KN(M, IN+I)'KM(M,L+3)
KN(M, IN+2)'KM(M, LL+3)
IN'IN+2
CONTINUE

DISPLACEMENT B.C.S ON Y-NORMAL FACES

IF((NBX.LE.I).OR.(NBZ.LE.I)) GO TO 4480
DO 4475 I'2,NBX
DO 4475 K'2,NBZ
L'( (NBZ+I)* (NBY+I)* (I-1)+ (K-l))'3
LL'L+ (NBZ+I) * (NBY) *3
DO 4470 M'I,INN
KN(M, IN+I)'KM (M,L+I)
KN(M, IN+2 )'KM (M,L+3)
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4470
4475
4480

C
C USE
C

4490
4492
4494

C
4595

C
C GET
C

GET

ON

4605

4610

C

C ON

C

4630

4640

C

C ON

C

KN(M, IN+3)-KM(M, LL+I)

KN(M, IN+4)-IOt(M, LL÷3)
IN-IN+4

CONTINUE

DISPLACEMENT B.C.S ON X-NORMAL FACES

IF((NBY.LE.0).OR.(NBZ.LE.I)) GO TO 4494

DO 4492 J-I,NBY+I

DO 4492 K-2,NBZ

L-((NBZ+I)"(J-I)+(K-I))*3

LL-L+((NBZ+I)*(NBY+I)*NBX)*3

DO 4490 M-I,INN

KN(M, IN+I)-IO4(M,L+I)

KN(M, IN+2)-KM(M, LL+I)

IN-IN+2

CONTINUE

CONTINUE

UNCONSTRAINED DISPLACEMENTS FOR UNIT STRAIN CASES

IJ-IN

CALL MATINV(KN,MMM, IJ,FS, 7, 7,DET)

A COMPLETE SET OF TOTAL DISPLACEMENTS

INTERIOR

IN-0

IF((NBX.LE.I).OR. (NBY.LE.I).OR. (NBZ.LE.I)) GO TO

DO 4605 I-2,NBX

DO 4605 J-2,NBY

DO 4605 K-2,NBZ
L-( (NBZ÷I)* (NBY+I)* (1-i)+ (NBZ+I)* (J-l) + (K-I))'3

M-5

UVW (L+I, M) -UVW (L+I, M) -FS (IN+I, M)

UVW (L+2, M) -UVW (L+2, M) -FS (IN+2, M)

UVW (L+3, M) -UVW (L+3, M) -FS (IN÷3, M)

IN-IN+3

CONTINUE

4610

Z-NORMAL FACES

IF((NBX.LE.I).OR. (NBY.LE.0)) GO TO 4640

DO 4630 I-2,NBX

DO 4630 J-1,NB¥+I

L-( (NBZ÷I)* (NB¥+I)* (I-1)+ (NBZ+I)* (J-I))'3
LL-L÷NBZ*3

M-5

UVW (L+3, M) -UVW (L+3, M) -FS (IN+l, M)

UVW (LL÷3, M) -UVW (LL+3, M) -FS (IN+2,M)
IN-IN+2

CONTINUE

Y-NORMAL FACES

IF((NBX.LE.I).OR. (NBZ.LE.1)) GO TO

DO 4680 I-2,NBX

DO 4680 K-2,NBZ

L-((NBZ+I) * (NBY+I) * (I-I) + (K-I)) *3
LL-L÷ (NBZ+I) * (NBY) *3

M-5

UVW (L+I, M) -UVW (L+ 1, M) -FS (IN÷I,M)

UVW (L+3, M) -UVW (L+3, M) -FS (IN+2, M)

UVW (LL÷I, M) -UVW (LL+I, M) -FS (IN+3, M)

4690
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UVW (LL+3, M) -UVW (LL+3 e M) -FS (IN+4, M)
4680 TN-TN+4
4690 CONTINUE

C

C ON X-NORMAL FACES

C
IF((NBY.LE.0).OR. (NBZ.LE.I)) GO TO 4790

DO 4780 J-I,NB¥+I
DO 4780 K-2,NBZ

L-((NBZ+I) * (J-l) + (K-I)) *3

LL-L+ ((NBZ+I) * (NB¥÷I) *NBX) *3

M-5

UVW (L+I, M) -UVW (L+I, M) -FS (IN+l, M)

UVW (LL+I, M) -UVW (LL+I, M) -FS (IN+2, M)
4780 IN-IN+2

4790 CONTINUE

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C COMPUTE NODAL FORCES AND ELASTIC CONSTANTS C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

IF(NP.LT.1) GO TO 4950

DO 4900 I-1,NP

DO 4900 J-I,6

FB(I, J)-0.0

DO 4900 K-I,NP

4900 FB(I,J)-FB(I,J)+KB(I,K)*UVW(K,J)

4950 CONTINUE

COMPUTE SIDE LOADS FOR EACH UNIT STRAIN CASE

XNA-Y L* ZL
¥NA-XL* ZL

ZNA-XLeYL

DO 5400 M-I,6

DO 5250 J-I,NBY+I

DO 5250 K-I,NBZ+I

L-((NBZ+I) * (J-l)+ (K-I))'3

FT(1,M)-FT(1,M)-FB(L+I,M)

FT (6, M) -FT (6, M) -FB (L+2, M)

5250 FT (5, M) -FT (5, M) -FB (L+3, M)
FT (i, M)-FT (I, M)/XNA

FT (5, M) -FT (5, M)/XNA

FT (6, M)-FT (6,M)/XNA

DO 5300 I-1,NBX+I

DO 5300 K-I,NBZ+I

L-( (NBZ+I)* (NBY+I) * (I-1)+ (I<-1))'3

FT (2, M)-FT (2,M)-FB (L+2, M)

5300 FT(4,M)-FT(4,M)-FB(L+3,M)

FT (2, M) -FT (2,M)/YNA

FT (4, M) -FT (4, M)/YNA
DO 5350 I-1,NBX+I

DO 5350 J-I,NBY+I

L-((NBZ+I)* (NBY+I) • (I-i)+ (NBZ+I)* (J-1))'3

5350 FT (3, M) -FT (3, M) -FB (L+3, M)

FT(3,M)-FT(3,M)/ZNA

5400 CONTINUE

DO 5420 I-1,6

DO 5420 J-I,6

5420 FTT (I, J)-FT (I, J)

C

C CALCULATE TEE ELASTIC CONSTANTS OF THE UNIT CELL

C

CALL ZNV (FTT)

DO 5450 I-i,6

DO 5450 J-1,6
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5450 FT(IsJ)-FTT(Z,J)
EX-1.0/FT (1,1)
EY-1.0/FT (2,2)
EZ-I. 0/FT (3, 3)

GX¥-1.0/FT (6, 6)

GYZ-1.0/FT (4, 4)
GXZ-1.0/FT (5, 5)

PRXY--FT (2, 1)/FT (i, 1)
PRYX--FT (1, 2)/FT (2, 2)
PRXZ--FT (3, 1)/FT (1, 1)
PRZX--FT (1, 3)/FT (3, 3)

PRYZ--FT (3, 2)/FT (2,2)

PRZY--FT (2, 3)/FT (3, 3)

C MIXXY-FT (4, l)/FT (I, i)

C MIXXZ-FT(6, I}/FT(I, i)

C MIXYZ-FT (5, I) JFT (1, I)

C MIYXY-FT (4,2)/FT (2, 2)

C MIYXZ-FT (6, 2)/FT (2, 2)

C MIYYZ-FT (5, 2)/FT (2, 2)

C MIZXY-FT (4,3)/FT (3, 3)
C MIZXZ-FT (6, 3)/FT (3, 3)

C MIZYZ-FT (5, 3)/FT (3, 3)

C CXYXZ-FT (4,5)/FT (5, 5)

C CXYYZ-FT (4, 6)/FT(6, 6)
C CXZYZ-FT (5, 6)/FT (6, 6)

WRITE (6,9560)

WRITE (6, 9560)
WRITE (6, 9600)

WRITE (6, 9560)

WRITE (6, 9500) EX, EY,EZ

WRITE(6, 9510) GYZ,GXZ,GXY

WRITE (6, 9520) PRYZ, PRXZ,PRXY

WRITE (6, 9525) PRZY, PRZX, PRYX

C WRITE (6,9530) MIXYZ,MIYYZ,MIZYZ

C WRITE (6, 9540) MIXXZ,MIYXZ,MIZXZ

C WRITE (6, 9550) MIXXY,MIYXY,MIZXY

WRITE (6, 9560)

WRITE (6,9560)
C

C READ THE APPLIED STRESSES

C

WRITE (6,9610)

WRITE (6, 9560)

WRITE (6, 9560 )

WRITE (6,9620)

READ (5, 9010) SX

WRITE (6, 9895) SX

WRITE (6, 9630)

READ (5, 9010) SY

WRITE (6, 9895) SY

WRITE (6, 9640)
READ'(5, 9010) SZ

WRITE (6, 9895) SZ
WRITE (6, 9650)

READ (5, 9010) SYZ

WRITE (6, 9895) SYZ

WRITE (6, 9660)

READ (5, 9010) SXZ
WRITE (6, 9895) SXZ
WRITE (6,9670)
READ (5, 9010) SXY
WRITE(6, 9895) SX¥
WRITE (6, 9560)

WRITE (6, 9560)

C
C CALCULATE THE AVERAGE STRAINS
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C

C
C GET
C

STN (l) -SX*FT (1, 1) +SY*FT (l, 2) ÷SZ*FT (l, 3) ÷SYZ*FT (l, 4}
STN ( l ) -STN ( l ) +SXZ*FT ( X, 5) +SXY*FT ( l, 6)

STN (2) -SX*FT (2, 1) +SY*FT (2,2) +SZtFT (2, 3) +syZeFT (2, 4)
STN (2) -STN (2) +SXZ*FT (2, 5) +SXY*FT (2, 6)

STN (3) -SXeFT (3, i) +S¥*FT (3,2) +SZ*FT (3, 3) +SYZ*FT (3, 4)
STN (3) -STN (3) +SXZ*FT (3, 5) +SXY*FT (3, 6)

STN (4) -SX*FT (4, i) ÷SY*FT (4,2) +SZ*FT (4,3) +SYZ*FT (4, 4)
STN (4) -STN (4) +SXZ*FT (4, 5) ÷SXY*FT (4, 6)

STN (5) -SX*FT (5, I) +SY*FT (5, 2) +SZ*FT (5, 3) +SYZ*FT (5, 4)

STN (5)-STN (5) ÷SXZ*FT (5, 5) +SXYeFT (5, 6}

STN (6) -SX*FT (6, 1) +S¥*FT (6, 2) +SZ*FT (6, 3) ÷SYZ*FT (6, 4)

STN (6)-STN (6) ÷SXZ*FT (6, 5) +SXY*FT (6, 6)

NODAL DISPLACEMENTS CORRESPONDING TO THE AVG. STRAINS

DO 5500 I-I,NP

VU (I) -STN (I) *UVW (I, I) ÷STN (2) *UVW (I, 2) +STN (3) *UVW (I, 3)

VU (I) -VU (I) +STN (4) *UVW (I, 4) +STN (5) *UVW (I, 5) +STN (6) *UVW (I, 6)
5500 CONTINUE

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C BEGIN DO LOOP FOR STRESSES IN EACH ELEMENT C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C ESTABLISH ELEMENT DIMENSIONS

C

DO 8000 I-1,NBX

DO 8000 J-1,NBY

DO 8000 K-I,NBZ
A-FDX (I+l) -FDX (I)

A-A*XL/I00.

AA-0.5*k

B-FDY (J÷l) -FDY (J)
B=B*YL/100.
BB'0.5*B

C'FDZ (K÷I) -FDZ (K)

C'C*ZL/100.

CC'0.5"C

DO 5600 III-l,6

DO 5600 JJJ'l,24

5600 BM (III, JJJ)'0.0

X-O .0
¥-0.0
Z-0.0

C
C GET
C

C
C GET
C

5700

C

C GET

C

STRAIN / DISPLACEMENT MATRIX

CALL GETB (AA, BB, CC, X, Y, Z, BM)

CORNER DISPLACEMENTS

L- ( (NBY+I)* (NBZ+I)* (1-1)+ (NBZ+I)* (J-l)+ (K-1))'3

LL-L÷ (NBZ+I) *3

LLL-L+ (NBZ+I) * (NBY+I) *3

LLLL-LLL÷ (NBZ+I) * 3

DO 5700 M-1,6

UVWS (M) -VU (L+M)

UVWS (M+6) -VU (LL+M)

UVWS (M+I2) -VU (LLL+M)

UVWS (M+18) -VU (LLLL÷M)

AVERAGE ELEMENT STRAINS

DO 5800 M-1,6

TS (M)-0.0
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DO .5900 N'1,24
5600 TS (M) -TS (M) +BM(H,N) *U'_S (N)

DUH-TS ( 4 )
TS (4)-T5 (5)
TS (5) -TS (6)
TS (6) -DUN

C

C RECALL NUMBER OF JUNCTIONS IN ELEMENT

C
JTC-NJC (I, J, K)

C
C RECALL MATL. NO. AND FIBER DIRECTION ANGLES

C

C

C GET

C

5900
C

C
C

C GET

C

6010

C
C GET

C

6040

6050

C

C

C

IF (JTC.LT.I) THEN
MN-MN1 (I, J, K)

AI-ANGIA (I, J, K)

A2-ANGIB (I, J, K)

AVERAGE STRAINS IN MATERIAL COORDINATES

CALL TRANS2 (A1,A2,T)

DO 5900 M-I,6

SIG (M) -0.0

DO 5900 N-1,6

SS (M, N) -0.0

S IG (M) -SIG (M) +T (M, N) *TS (N)

WRITE (6, 9031) I, J, J(

WRITE (6, 9020) (SIG(M),M-I,6)

STRESSES IN THE MATERIAL

CALL GETSS (P_4,MN, PROP, 55)

CALL GETMS (_R4,MN, PROP, SIG, SAFE)

DO 6010 M-1,6
TSI (M)-0.0

DO 6010 N-1,6

TSI (M) -TS1 (H) +SS (M, N) *SIG (N)

WRITE (6, 9560)

WRITE (6,9690) I,J,K

WRITE (6,9692) MN

WRITE (6, 9694) TSI (1), TS1(2) ,TSI (3)

WRITE (6, 9696) TSI (4) ,TS1(5) ,TSI (6)

WRITE (6, 9698) SAFE

WRITE (6, 9560)
END IF

(ONLY BRANCa)

RECALL INTERFACIAL NORMAL DIRECTION ANGLES (FIRST BRANCH}

IF (JTC. EQ. I) THEN

A1-AGNIA (I, J, K)
A2-AGNI B (I, J, K)

AVG. STRAINS IN INTERFACIAL COORDINATES

CALL TRANS2 (A1,A2,T)

DO 6050 IX-l,6
DUN-0.0

DO 6040 JJ-l,6

DUH-DUM+T (II, JJ) *TS (JJ)

TSS (I I) -DUM

RECALL MATL.NO. AND FIBER DIRECTION ANGLES

MN-HNI (I, J, K)

A1-ANGIA (I, J, K)

A2-ANGIB (I, J, K)

(FIRST BRANCH)
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C
C GET
C

STRESS/STRAIN MATRIX IN GLOBAL COORDINATES

CALL GETSS (_, MN, PROP, SS}
CALL TRANS2 (AI,A2,T)
DO 6400 II-1,6
DO 6400 JJ-l,6
SUM-0.0
DO 6350 KK-I,6

6350 SUM-SUM+SS (II,KK) *T (KK, JJ)

6400 PR (II, JJ)-SUM
DO 6450 II-1,6
DO 6450 JJ-l,6

SUM-O. 0
DO 6440 KK'I,6

6440 SUM'SUM+T (KK, IX) *PR (KK, JJ)
6450 SSI(II,JJ)-SUM

C
C RECALL MATL.NO. AND FIBER DIRECTION ANGLES (SECOND BRANCH)

C
MN-MN2 (I, J,K)
AI-ANG2A (I,J, K)
A2-ANG2B (I,J, K)

C
C GET STRESS/STRAIN MATRIX IN GLOBAL COORDINATES
C

CALL GETSS (I_4,MN,PROP,SS)
CALL TRANS2 (A1,A2,T)
DO 6500 II-i,6
DO 6500 JJ-l,6
SUM-0.0
DO 6490 KK-I,6

6490 S_4-SUM+SS (II, KX) *T (KK, JJ)
6500 PR(II,JJ)-SUM

DO 6550 II-I,6
DO 6550 JJ-1,6
SUM-0.0

DO 6540 KK-I,6
6540 SUM-SUM+T (KK, II) *PR (KK,JJ)
6550 SS2(II,JJ)-SUM

C
C RECALL FIRST BRANCH VOL.FRACT. AND INTERFACIAL NORMAL ANGLES

C
VI-FVI (I,J,K)
V2-1.0-VI

AI-AGNIA (I,J, K)
A2-AGNIB (I, J,K)

S.S. MATRICES IN INTERFACIAL COORDINATES
C
C GET
C

6590

6600

CALL TRANSI (AI,A2,T)

DO 6600 II'i,6
DO 6600 JJ-l,6
SUM-0.0
TUM=0.0
DO 6590 KK-1,6
SUM-SUM+SS I (II,KK) *T (KK, JJ)
TUM-TUM+SS2 (II, KK) *T (KK, JJ)
RP (II, JJ) -SUM
PR (II, JJ) -TUM
DO 6650 II-1,6
DO 6650 JJ-1, 6
SUM-0.0
TUM-0.0

DO 6640 KK-I,6
SUM-SUM+T (KK, II) *RP (KK, JJ)
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6640 TUM'TUM÷T {KK, II) *PR (KK, JJ)

SSSI (II, JJ) "SUM

6650 SSS2(II,JJ|'TUM

C

C DO REPLACEMENT MATERIAL ANALYSIS AT

C

C
C GET

C

6711

C

C GET

C

6715

6720
C
C GET

C

6725

6730

6735

6740

C

C GET

C

6750

FIRST JUNCTION

CALL GETDD(SSSI,SSS2,V1,V2,DDI,DD2)

CONSTITUENT STRAINS IN INTERFACIAL COORDINATES

DO 6711 II-i,6

TSI (11)-0.0

TS2 (If)-0.0
DO 6711 JJ'l,6

TS1 (II) -TS1 (II) +DDI (II, JJ| *TSS (JJ)

TS2 (II) -TS2 (II) +DD2 (II, JJ) *TSS (JJ)

CONSTITUENT STRAINS IN GLOBAL COORDINATES

DO 6720 IZ-I,6
DUM-0 •0

TUM-0.0

DO 6715 JJ'1,6

DUM-DUM+T (II, JJ) *TS1 (JJ)

TUM-TUM+T (If, JJ) *TS2 (JJ)

TS (II) -DUM

TSS (If) -TUM

CONSTITUENT STRAINS IN MATERIAL COORDINATES

AI-ANGIA (I, J,K)

A2-ANGIB (I, J, K)
CALL TRANS2(AI,A2,T)

DO 6730 II-1,6
DUM-O. 0

DO 6725 JJ'1,6

DUM'DUM+T (II, JJ) *TS (JJ)

TSI (II)-DUM

AI-ANG2A (Z, J, K)
A2-ANG2B (I, J, K)

CALL TRANS2 (AI,A2,T)

DO 6740 II-1,6
DUM-O, 0

DO 6735 JJ-Z,6

DUM-DUM+T (IX, JJ) *TSS (JJ)

TS2 (II) -DUM

CONSTITUENT STRESSES IN MATERIAL COORDINATES

MN-MNZ (I, J, K)

CALL GETSS (Pg4,MN, PROP, SS)

CALL GETMS (MM, HN, PROP, TS1, SAFE)

DO 6750 II-l,6

ST1 (II)-0.0

DO 6750 JJ-l,6
STI (II|-STI (II} +SS (II, JJ} *TSZ (JJ)

WRITE (6, 9560)
WRITE (6, 9690)

WRITE (6, 9692)

WRITE (6, 9694)

WRITE (6,9696)

WRITE (6, 9698)
WRITE (6, 9560)

MN-MN2 (I, J,K)

CALL GETSS (_,MN, PROP, SS)

CALL GETMS (MM, MN, PROP, TS2, SAFE)

I,J,K
MN

STZ (1), STI (2) ,STZ (3)

STI (4), STI (5),S71(6)
SAFE
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6760

DO 6760 11-1,6

ST2 (II)-0.0
DO 6760 JJ-l,6

ST2 (II)-ST2 (II) ÷SS (II, JJ) *TS2 (JJ)

WRITE (6, 9560)

WRITE (6, 9690) I,J,K

WRITE (6, 9692) MN

WRITE (6, 9694) ST2(1),ST2(2),ST2(3)

WRITE (6,9696) ST2(4),ST2(5),ST2(6)

WRITE(6,9698) SAFE

WRITE (6, 9560}

END IF

IF(JTC.EQ.2) THEN

C
C RECALL MATL.NO. AND FIBER DIRECTION ANGLES (FIRST

C

C

C GET

C

7035

7040

MN-MN 1 (I, J, K)
AI-ANGIA (I, J, K)
A2"ANGIB (I, J, K)

STRESS/STRAIN MATRIX IN GLOBAL COORDINATES

CALL GETSS (MM, MN, PROP, SS)

CALL TRANS2 (AI,A2,T)

DO 7040 II-I,6

DO 7040 JJ-l,6

SUM-0.0

DO 7035 KK-1,6

SUM-SUM+S S (I I, KK) *T (KK, JJ)

PR (I I, JJ) -SUM
DO 7045 II-l,6

DO 7045 JJ-1,6

SUM-0.0

DO 7044 KK'I,6

7044 SUM'SUM+T (KK, II) *PR (KK, JJ)

7045 SSI(II,JJ)'SUM

C

C RECALL MATL.NO.

C

C

C GET

C

7049

7050

BRANCH)

AND FIBER DIRECTION ANGLES (SECOND BRANCH)

MN-MN2 (I, J, K)
AI"ANG2A (I, J, K)

A2"ANG2B (I, J, K)

STRESS/STRAIN MATRIX IN GLOBAL COORDINATES

CALL GETSS (MM,MN, PROP, SS)

CALL TRANS2 (AI,A2,T)
DO 7050 II'1,6

DO 7050 JJ'l, 6

SUM'0 •0

DO 7049 KK'I,6

SUM'SUM+SS (II, KK) *T (KK, JJ)

PR (II, JJ)'SUM
DO 7055 II'l,6

DO 7055 JJ'1,6
SUM'0 •0

DO 7054 KK'I,6
7054 SUM-SUM+T (KK, II) *PR (KK, JJ)

7055 SS2(II,JJ)-SUM

C
C RECALL FIRST BRANCH

C
VI-FV1 (I, J, K)
V2-1.0-Vl

AI-AGNIA (I, J, K)

VOL.FRACT. AND INTERFACIAL NORMAL ANGLES
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°..

C
C GET

C

7064

7065

C

C DO

C

7074

7075

C
C GET

C

7078

7079

A2-AGNIB (I, J, K)

S .S. MATRICES IN INTE_L=ACIAL. COORDINATES

CALL TRANSI(A1,A2,T;

DO 7060 II-l,6

DO 7060 JJ-l,6

SUM-0.0

TUM-0.0

DO 7059 KK-1,6

SUM-SUM+SS 1 (I I, KK) "T (Y_K,,JJ)

TUM-TUM+SS2 (II, KK) *T (_<_i.J J)

RP (If, JJ) -SUM

PR (If, JJ) -TUM

DO 7065 II-l,6

DO 7065 JJ-l,6

SUM-0.0
TUM-0.0

DO 7064 KK-1,6

SUM-SUM+T [KK, If) "RP (KK, JJ]

TUM-TUM+T (KK, II) "PR (KK, JJ)

SSS1 (II, JJ) -SUM
SSS2 (II, JJ]-TUM

REPLACEMENT MATERIAL ANALYSIS AT FIRST JUNCTION

CALL GETDD(SSSI.SSS2,VI,"2,DDI,DD2)

DO 7075 II-l, 6
DO 7075 JJ-l,6

DUM'O. 0
DO 7074 KK-1,6

DUM-DUM*VI*SSSI (I-_,KK) *DDI (_K, JJ) +V2*SSS2 (II, KK) *DD2 (KK, JJ)

DD (II, JJ) -DUM

REPLACEMENT S.S. MATRIX IN GLOBAL COORDINATES

CALL TRANS2 (A1,A2,T)

DO 7079 II-i,6

DO 7079 JJ-l,6
SUM-O. 0

DO 7078 KK'I, 6
SUM'SUM+DD (II, KK) *T (KK, JJ)

PR (II, JJ) "SUM

DO 7085 II'1,6
DO 7085 JJ'1,6

SUM'0 •0

DO 7084 KK'I,6
7084 SUM'SUM+T(KK, II)*PR(KK, JJ)

7085 SSI(II,JJ)'SUM

C
C RECALL MATL.NO.

C

C

C GET

C

7149

7150

AND FIBER DIRECTION ANGLES (THIRD BRANCH)

MN'MN3 (I, J, K)

AI"ANG3A (I, J, K)

A2"ANG3B (I, J, K)

STRESS/STRAIN MATRIX IN GLOBAL 'COORDINATES

CALL GETSS ()_4,MN, PROP, SS)

CALL TRANS2 (A1, A2, T)

DO 7150 II'1,6

DO 7150 JJ'l,6
SUM-0 •0

DO 7149 KK'I,6

SUM'SUM+SS (II,KK) *T (KK, JJ)

PR(II, JJ)'SUM
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DO 7155 II-_, 6

D<> 7155 JJ'l,6

S _-0.0

DO 7'.54 KK'I,6

SJM-:_UM*T (KK, II) "PR (KK, ,,d}

S32L12. JJ)'SUM

7154

71_b

C
C RECALL SECOND BRANCH VO_.FRACT.

C

C

C GIT

C

7!64

V2-FV2 (I, J, K)
J_-I. 0-Vl

Ai-AGN2A( I, J, K)

A2-_GN2B (I, J, K)

S,S. MATRICES IN

CALL TRANSi(AI,

00 7160 II'i,6

30 7160 JJ-l,6
_3[_-0.0

TUM-'0.0

DO 7159 KK-I,6

SUM-SUM÷SSI {II, KK) "? ._KI',3J)

TUM-TUM+SS2 (II, KK} "T {KK, Jd)

RP _l _, JJ)-SUM

pp _Ii, JJ)-TUM

DC 7!65 II-l,6

DO 7165 JJ'1,6
SUM-0.0

T'JM'0 . 0
DO 7164 KK-I, 6

SUM'SUM+T (KK, If) "RP [K_, Jd)

TUM-TUM÷T (KK, II )*PR (KK, JJ

SSSI (II, JJ)'SUM

SSS2 (II, JJ)'TUM

AND _NTERFACIAL NORMAL ANGLES

INTERFACiAL COORDINATES

A2,TI

716_

C
C DO REPLACEMENT MATERIAL ANALYSIS AT

C

C

C GET

C

7240

7250

C
C GET
C

7311

C

C GET

C

SECOND JUNCTION

CALL GETDD(SSS1,SSS2,VI,V2,DDI,DD2)

AVERAGE STRAINS IN INTERFACIAL COORDINATES

Ai-AGN2A (I, J, K)

A2-AGN2B (I, J, K)
CALL TRANS2(AI,A2,T)

DO 7250 II-l,6

DUM-0.0

DO 7240 JJ'l,6
DUM-DUM+T (II, JJ) *TS (3J)

TSS (II) -DUM

CONSTITUENT STRAINS IN INTERFACIAL COORDIDATES

DO 7311 II-l,6
TSI (If)-0.0

TS2 (II}-0.0

DO 7311 JJ-l,6

TSI (II)-TS1 (II) ÷DDI (i_, JJ)*TSS (JJ)
TS2 (II)-TS2 (II) ÷DD2 (I_, JJ)*TSS (JJ)

CONSTITUENT STRAINS IN GLOBAL COORDINATES

CALL TRANSI[AI,A2,T)

DO 7320 II-1,6
DUM-0.0

TUM-0.0
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_3L5

c
C _£.T

C

? ;50

DO 7315 JJ-l,6

DUM-DUM*T (I_, JJ) tT:_- .-:;

TUM-TUM÷T ( I I, JJ ) "'7 Z ....

TS (II )-DUM

TSS (I I )-TUM

AI-ANG3A (I, J, K)

A2-ANG3B (I, J, K)

CALL TRANS2(AI,A2. T_

DO 7330 II-l,6

DUM-0.0

DO 7325 JJ-l,6

DUM-DUM+T(II,JJ)'TSS ._;

TS2 (II) -DUM

CONSTITUENT STRESSES IN M_%"_RZ_ Z.}_KDINATEZ

MN-MN3(I,J,K)

CALL GETSS(MM,MN,_ROP,'ISi

CALL GETMS(/_M,MN, PROP,TS2¢ 5"_E ,

DO 7350 If-l,6

ST2(II)-0.0

DO 7350 JJ-l,6
ST2[II)-ST2(II)+SS(II,.J}_':'S2[JJI _

WRITE[6,9560)

WRITE(6,9690) I,J,K

WRITE(6,9692) MN
WRITE(6,9694) ST=(I},ST2(' _,STI(3_

WRITE(6,9696) ST2(4},[_"L i_ S:'_ili_.,,

WR_TE(6,9698] SAF_

WRITE¢6,9560|

_ECALL FIRST BRANCI_ I._';_E_.:,/'LAL dGRMA._ ANGLES

AI'AGNIA(I,J,K)

A2"AGNIB(I,J,K)

G_T AVERAGE STRAINS IN INTE_.<KACkAL COORDINATES

CALL TRANS2(A1,A2,T}

DO 7370 II-l,6
DUM-0.0

DO 7360 JJ-l,6

DUM-DUM*T(II,JJ)*TS(JJ)

TSS(II)-DUM

_360

7370

C

C R£CALL FIRST BRANCH MATL. NU_..;_FR A_[i FIBER ANGLES

C

C
C GET

C

7390
7400

7440

MN-MNI (I, J,K)

AI-ANGIA(I, J, K)

A2-ANGIB (I, J, K}

FIRST BRANCH S.S. MATRIX IN GLOBAL COORDINATES

CALL GETSS(MM,MN. _ROP,S_I

CALL TRANS2(AI,A2,T)

DO 7400 II-l,6

DO 7400 JJ-l,6
SUM-0.0

DO 7390 KK-I,6

SUM-SUM+SS (II, KK) *T (KK, JJ)

PR (II, JJ) -SUM

DO 7450 II-l,6

DO 7450 JJ-l,6
SUM-0.0

DO 7440 KK-I,6

SUM-SUM÷T (KK, II) *PR ([<K,JJ)
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7450 SSI(II,JJ)-SUM
C
C RECALL SECOND BRANCH MATL. NUMBER
C

C
C GET
C

7490
7500

MN-MN2 (I,J,K]
AI"ANGBA {I,J, K)
A2-ANG2B (I,J, K)

AND FIBER ANGLES

SECOND BRANCH S.S. MATRIX IN GLOBAL COORDINATES

7540
7550

C
C RECALL FIRST BRANCH VOL.
C

C
C GET
C

CALL GETSS (_,MN, PROP, SS)
CALL TRANS2 (At, A2, T ]
DO 7500 II'1, 6
DO 7500 JJ'1,6
SUM'0 •0
DO 7490 KK'I,6
SUM'SUM+SS (II, KK) *T (KK, JJ)

PR (If, JJ) -SUM
DO 7550 II'I,6
DO 7550 JJ'1,6
SUM'0.0

DO 7540 KK'I,6
SUM-SUMeT (KK, II) *PR (KK, JJ)
SS2 (II, JJ) "SUM

FRACT. AND INTER. NORMAL ANGLES

V1-FV1 (I, J,K)
V2-1.0-Vl

AI"AGNIA (I,J,K]
AB-AGNZB (I, J,K)

MATL S.S. MATRICES IN INTERFACIAL COORDINATES

CALL TRANS1 (AI,A2,T)
D0 7600 II'I,6
DO 7600 JJ'1,6
SUM'0.0
TUM'0.0

DO 7590 KK'I,6
SUM'SUMeSSI (II, KK} *T (KK, JJ|

7590 TUM'TUM+SS2 {II,KK)*T(KK, JJ)

RP (II, JJ] "SUM
7600 PR (IZ,JJ]'TUM

DO 7650 II-1,6
DO 7650 JJ-1,6
SUM'0.0

TUM'0 •0
DO 7640 KK-1,6
SUM'SUM+T (KK, II} *RP (KK, JJ}

7640 TUM'TUM+T [KK, II) *PR (KK, JJ}

SSS1 {II, JJ) "SUM
7650 SSSBiII,JJ)'TUM

C
C DO REPLACEMENT MATERIAL ANALYSIS
C

CALL GETDD {SSSI, SSS2, VI, V2, DD1, DDB)
C
C GET
C

7711

CONSTITUENT STRAINS IN INTERFACIAL COORDINATES

DO 7711 II-1,6
TSZ (II)-0.0
TS2 (II) -0.0

DO 7711 JJ-1,6
TS1 (IZ) -TSI (II) +DDI (II, JJ) *TSS (JJ)
TS2 (II) -TS2 (If) ÷DD2 (II, JJ)*TSS (JJ)
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C
C GET CONSTITUENT STRAINS IN GLOBRJ, COORDINATES

C
DO 7720 II-I,6

DOO-0 •0

TUM-0.0

DO 7715 JJ-l,6

DUM-DUM+T (IX, JJ) *TSI {JJ)

7715 TUM-TUM+T (II, JJ) *TS2 (JJ)

TS (II) -DUM

7720 TSS (IX)-T00

C
C RECALL FIRST BRANCH FIBER ANGLES

C
A1-ANGIA (I, J, K)

A2-ANGIB (I, J, K)

C

C GET FIRST BRANCH STRAINS IN MATERIAL COORDINATES

C

7725

7730

C

CALL TRANS2 (A1,A2,T)

DO 7730 II'1,6

DUM'0 •0

DO 7725 JJ'l,6

DUM'DUM+T (II, JJ) *TS (JJ)

TSI (II)"DUM

C RECALL SECOND BRANCH FIBER ANGLES

C
AI'ANG2A (I, J, K)

A2"ANG2B (I, J, K)

C

C GET
C

7735

7740

C
C GET

C

7750

C
C GET

C

7760

SECOND BRANCH STRAINS IN MATERIAL COORDINATES

CALL TKANS2 (A1,A2,T)

DO 7740 II-l,6

DUM-0.0

DO 7735 JJ-1,6

DUM-DUM+T (II, JJ} *TSS (JJ)

TS2 (If)-DUM

FIRST BRANCH STRESSES

MN-MNI (I, J, K)
CALL GETSS (MM,MN, PROP, SS)

CALL GETMS (MM,MN, PROP, TS1, SAFE)

DO 7750 II-i,6

ST1 (II)-0.0

DO 7750 JJ-1,6

ST1 (II) -ST1 (II) +SS (II, JJ) *TSI (JJ)

WRITE (6, 9560)

WRITE (6, 9690) I,J,K

WRITE(6, 9692) MN
WRITE (6, 9694) STI(1),STI(2),STI(3)

WRITE (6, 9696) STI(4),STI(5),STI(6)

WRITE (6, 9698) SAFE

WRITE (6,9560}

SECOND BRANCH STRESSES

HN-MN2 (I, J, K)
CALL GETSS (MM, MN, PROP, SS)

CALL GETMS (_l, MN, PROP, TS2, SAFE)

DO 7760 II-l,6

ST2 (II)-0.0

DO 7760 JJ-l,6
ST2 (II)-ST2 (II) +SS(II,JJ) *TS2 (JJ)
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WRITE (6, 9560)
WRITE (6, 9690) I,J,K

WRITE (6, 9692) MN

WRITE (6, 9694) ST2(1),ST2(2},ST2(3)

WRITE (6,9696) ST2(4),ST2(5),ST2(6}

WRITE (6, 9698) SAFE

WRITE (6, 9560)

END IF

8000 CONTINUE

C
9000 FORMAT (FI2.5)

9010 FORMAT (F12.2)

9015 FORMAT (E16.6)

9020 FORMAT (6F12.2)

9025 FORMAT (10X, 4E14.4)

9030 FORMAT(I5) "-"
C9031 FORMAT(3IS)
9060 FORMAT(1H ,'INPUT NUMBER OF JUNCTIONS AT LOCATION',314)

9080 FORMAT(1H ,'INPUT NO. SUBCELLS (X DIR.) IN UNIT CELL')

9090 FORMAT(1H ,'INPUT NO. SUBCELLS (Y DIR.) IN UNIT CELL')

9095 FORMAT(1H ,'INPUT NO. SUBCELLS (Z DIR.) IN UNIT CELL')

9100 FORMAT(IH ,'INPUT NO. COMPOSITE MATERIALS NEEDED, NM')

9120 FORMAT(IH ,'INPUT E IN FIBER DIRECTION')

9130 FORMAT(IH ,'INPUT E NORMAL TO FIBER DIRECTION')
9140 FORMATqIH ,'INPUT MAJOR POISSONS RATIO IN LT PLANE')

9150 FORMAT(1H ,'INPUT POISSONS RATIO IN TT PLANE'}
9160 FORMATIIH ,'INPUT SHEAR MODULUS G IN LT PLANE'}

9170 FORMATIIH ,'INPUT SHEAR MODULUS G IN TT PLANE'}

9175 FORMATIIH ,'INPUT LONG.TENSION ALLOWABLE'}
9177 FORMAT,IH ,'INPUT LONG COMPRESSION ALLOWABLE')

9178 FORMAT,IH ,'INPUT TRANS. TENSION ALLOWABLE')

9179 FORMAT IH ,'INPUT TRANS. COMPRESSION ALLOWABLE')

9180 FORMAT IH ,'SELECT A MATERIAL NUMBER FROM ONE TO TEN')

9190 FORMAT IH ,'MATERIAL PROPERTY DATA ECHO')

9320 FORMAT IH ,'SPECIFY THE CURRENT MATL. ID. NO.'}

9440 FORMAT(IH ,'INPUT SIDE LENGTH OF UNIT CELL IN X DIR.')

9450 FORMAT(IH ,'INPUT SIDE LENGTH OF UNIT CELL IN ¥ DIR.'}

9455 FORMAT(IH ,'INPUT SIDE LENGTH OF UNIT CELL IN Z DIR. #)

9460 FORMAT(IH ,'INPUT DIST.(%) ORIGIN TO UNIT CELL NODE',I3)

9480 FORMAT(1H ,'INPUT IST FIBER SPHERICAL ANGLE')

9485 FORMAT(IH ,'INPUT IST INTERFACIAL NORMAL ANGLE'}

9490 FORMAT(IH ,'INPUT 2ND FIBER SPHERICAL ANGLE')

9495 FORMAT(1H ,'INPUT 2ND INTERFACIAL NORMAL ANGLE'}

9500 FORMAT(IH ,'EX, EY,EZ " ',3712.2)

9510 FORMAT(IH ,'GYZ,GXZ,GXY " ',3F12.2)

9520 FORMAT(IH ,'MUYZ,MUXZ,MUXY " ',3F12.4)

9525 FORMAT(IH ,'MUZY,MUZX,MUYX - ',3F12.4)

9530 FORMAT(IH ,'NUYZ, X ; NUYZ,Y ; NUYZ, Z " ',3F12.4)

9540 FORMAT(1H ,'NUXZ, X ; NUXZ,Y ; NUXZ, Z " ',3F12.4)

9550 FORMAT(IH ,'NUXY, X ; NUXY,Y ; NUXY, Z " ',3F12.4)

9560 FORMAT(1H )

9600 FORMAT(1H ,13X,'ELASTIC CONSTANTS OF THE COMPOSITE ')
9610 FORMAT(1H ,13X,'INPUT APPLIED STRESSES IN X,Y,Z COORDINATES'}

9620 FORMAT(1H ,SX,'INPUT X NORMAL STRESS ')

9630 FORMAT(IH ,SX,'INPUT Y NORMAL STRESS ')

9640 FORMAT(IH ,5X,'INPUT Z NORMAL STRESS '}

9650 FO_AT_

9660 FORMATI

9670 FORMATI
9690 FORMAT_

9692 FORMAT_

9694 FORMATI

9696 FORMAT

9698 FORMAT

9700 FORMAT

9710 FORMAT

1H ,SX,'INPUT YZ SHEAR STRESS ')

IH ,SX,'INPUT XZ SHEAR STRESS ')

IH ,5X,'INPUT XY SHEAR STRESS ')
1H ,SX,'STRESSES IN ELEMENT NO.',313)

IH ,'MATERIAL NO. ',I3)

IH ,'NORMAL 1,2,3 ',3F14.2)

IH ,'SHEAR 23,13,12 ',3F14.2)

1H ,'MINIMUM MARGIN OF SAFETY IS ',F12.4)

1H ,'INPUT MATL. NO. i AT ',314}

1H ,'INPUT MATL. NO. 2 AT ',314)
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9715 FORMAT(1H ,'INPUT MATL. NO. 3 AT ',314)

9720 FORMAT(IH , 'INPUT IST MATL. VOLUME FRACTION')

gSg5 FORMAT(1H ,' ({',r?.1,'))')

9898 FORMAT(IH ,' ((',F4.1,'))')

9899 FORMAT(IH ,' ((',I3,' ))')

9999 END
C-o-

C MATRIX INVERSION BY PARTITIONING OF A 6X6 MATRIX

C
SUBROUTINE INV (A)
DIMENSION A (6, 6}, B(4, 4) ,X (4, 4), ¥(4,4), Z (4,4)

D-A(1, I)* (A(2,2)*A(3, 3)-A(2,3)*A(3, 2) )
I -A(2, I) * (A (I, 2)*A(3, 3)-A (I, 3)*A(3, 2) )

2 +A (3, 1 ) * (A (I, 2) *A (2, 3) -A (2, 21 *A (1, 3) )
IF(D.E0.0.0) GOTO 700

B(I, I)- (A(2, 2) *A (3, 3)-A(2, 3) *A(3,2) )/D
B(I, 2)--(A(I, 2)*A(3,3)-A(1, 3)*A(3,21 )/D

B(1,3)- (A (i, 2) *A (2,3)-A(I, 3) *A (2,2) 1/D
B (2, I)-- (A(2, i) *A(3,3)-A(2,3) *A(3, I) )/D

B(2,2)- (A(I, I) *A (3, 3)-A (I, 3) *A (3, I) )/D

B(2,3)-- (A(I, I)*A(2,3)-A(I, 3)*A(2, I))/D

B(3,1)- (A(2,11*A(3,21-A(2,2)*A(3,1))/D

B (3,2)-- (A(I, I) *A(3, 2)-A(I, 2) *A(3, 15)/D

B(3,3)" (A(I,I)*A(2,2)-A(I,2)*A(2,1))/D

DO i00 I-1,3

DO 100 J-l,3

X(I,J)-0.0

¥ (I,J)-0.0

I00 Z (I, J)-A(I+3, J+3)
DO 200 I-1,3

DO 200 J-l, 3

DO 200 K-1,3

X (I, J) -X (I, J) +B (I, K) *A (K, J+3)

200 ¥ (I, J)-¥ (I, J) +A (I+3, K) *B (K, J}

DO 300 I-I,3

DO 300 J'l,3

DO 300 K'1,3

300 Z (I, J)'Z (I, J) -¥ (I, K) *A (K, J+3)
D-Z(1,1)- (Z(2,2)*Z(3,3)-Z(2,3)*Z(3, 25)

1 -Z(2,1)"(Z(1,2)*Z(3,3)-Z(1,3)*Z(3, 25)
2 +z(3,1)*(z(1,2)*z(2,3)-z(2,2)*z(1,3))
IF(D.EQ.0.0) GOTO 700

DO 400 I'1,6

DO 400 J'1,6
400 A(I,J)'0.0

A(4,4}" (Z (2, 2) *Z (3, 3)-Z (2, 3) *Z (3, 2) )/D

A(4,5)--(Z(1, 2)*Z(3, 3)-Z(1, 3)*Z(3,2))/D

A(4,6)- (Z (1, 2)*Z (2, 3)-Z (1,3)*Z (2,25)/D
A (5, 4) -- (Z (2, I) *Z (3, 3) -Z (2, 3) *Z (3,1) )/D

A(5,5)- (Z (I, 1)*Z (3, 3)-Z (i, 3) *Z (3,1))/D
A(5, 6)--(Z(1, 1)*Z(2,3)-Z(1, 3)*Z(2,1))/D
A (6, 4"5- (Zf2,1)*Z(3,2)-Z(2,2)*Z(3,1))/D
A(6, 5)-- (Z(1, 15"Z (3, 2)-Z(1,25*Z (3, 1))/D
A(6, 6)- (Z (1, 1)*Z (2, 2)-Z (1, 2) *Z (2,1))/D
DO 500 I'I, 3

DO 500 J'I,3

A(I, J)'B(I, J)

DO 500 K'I,3

A (I, J+3) "A (Z, J+35 -X (I, K) *A (K+3, J+3)

500 A(I+3, J)'A(I+3, J)-A (I+3, K+3)*¥ (K, J)

DO 600 I'I,3

DO 600 J'l,3

DO 600 K'1,3

600 A(I,J)'A(I,JS-A(I,K+3)*Y(K,J)
GO TO 2000

700 D- A(1,1)*(A(2,2)*(A(3,3)*A(4,4)-A(3,45*A(4,3})
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1 -A (2, 3) * (A (3,2) *A(4,4) -A (3, 4) *A(4' 2) )
2 +A(2,4)* (A(3,2)*A(4,3)-A(3,3)*A(4,2)))

D'D-A(1,2)* (A(2,1)* (A(3,3)*A(4, 4)-A(3,4)*A(4,3))
1 -A(2,3)* (A(3,1)*A(4, 4)-A(3,4)*A(4, 1))
2 +A (2,4) * (A (3, 1) *A (4,3) -A (3,3) *A(4, 1) ) )

D'D+A (1,3)* (A(2,1)* (A(3, 2)*A(4,4)-A(3, 4)*A(4,2))
1 -A(2,2)* (A(3, 1)*A(4, 4)-A(3,4)*A(4, 1))
2 +A(2, 4) * (A (3,1) *A(4,2) -A (3,2) *A(4, 1) ) )

D-D-A(1,4)* (A(2, 1)* (A(3,2)*A(4,3)-A(3, 3)*A(4,2) )
1 -A(2,2)* (A(3,1)*A(4, 3)-A(3,3)*A(4, 1))
2 +A(2,3)*(A(3,1)*A(4,2)-A(3,2)*A(4, 1) ))

C WRITE (6, 9010) D
C9010 FORMAT (F12.2)

ZF(D.EQ.0.0) D'I.0
B(1, 1)" +A (2,2) * (A(3, 3) *A(4, 'I)-A (3, 4)*A(4,3) )

1 -A (2, 3) * (A (3, 2),k (4, 4) -A (3, 4) *A(4,2) )
2 +A (2,4) * (A (3,2) *A (4, 3) -A (3, 3) *A (4,2))

B(1,2)- -A (1,2) * (A (3, 3) *A (4, 4) -A (3, 4)*A(4, 3) )
1 +A (1, 3) * (A (3, 2) *A(4,4) -A (3, 4) *A(4,2) )
2 -A (1,4) * (A(3, 2) *A(4, 3) -A (3, 3) *A (4, 2) )

B(1,3)" +A(1,2)* (A (2,3) *A (4, 4) -A (2, 4)*A(4, 3) )
I -A(l, 3) * (A (2,2) *A(4, 4) -A(2,4) *A(4, 2) )

2 +A (i, 4 )* (A (2,2) *A (4,3) -A(2,3) *A(4, 2) )

B(I,4)- -A(I, 2)* (A (2, 3) *A(3, 4)-A(2, 4) *A(3, 3) )
1 +A(I, 3) * (A (2,2) *A(3, 4) -A(2,4) *A(3, 2) )

2 -A(1, 4) * (A (2,2) *A(3, 3) -A(2,3) *A(3, 2) )

B(2,1)- -A (2,1) * (A (3,3) *A(4, 4)-A (3, 4)*A(4,3) )
1 +A(2, 3)* (A(3, 1)*A(4, 4)-A(3, 4)*A(4, I))

2 -A (2,4) * (A (3, I)*A(4, 3)-A (3, 3)*A(4, I) )

B(2,2)- +A (I, i) * (A (3, 3) *A(4, 4) -A (3, 4) *A(4,3) )
1 -A (I, 3) * (A(3, i) *A(4, 4) -A (3, 4) *A(4, I) )

2 +A(I, 4) * (A(3, I) *A(4,3) -A (3,3) *A(4,1) )

B(2,3)- -A (1, I) * (A(2,3) *A(4, 4) -A (2,4) *A(4, 3) )

1 +A (1,3) * (A (2, i) *A(4,4) -A (2,4) *A(4, I) )

2 -A (I, 4) * (A(2, I) *A(4,3) -A (2,3) *A (4, I) )

B(2,4)" +A (I, i)* (A(2,3) *A(3, 4)-A (2,4) *A (3, 3) )

1 -A (i, 3) * (A(2, i) *A(3, 4) -A (2, 4) *A(3, I) )

2 +A(1,4)* (A(2, 1)*A(3,3)-A(2,3)*A(3,1))
B(3, 1)- +A (2,1)* (A(3, 2)*A (4, 4)-A(3, 4)*A(4, 2) )

1 -A (2,2) * (A (3, i) *A (4,4) -A (3, 4) *A(4, I) )

2 +A(2,4)* (A(3, I)*A(4,2)-A(3,2)*A(4, I) )

B(3, 2)- -A (I, i)* (A (3,2)*A(4, 4)-A(3, 4)*A(4, 2) )

1 +A(I, 2) * (A (3,1) *A(4, 4) -A (3, 4) *A(4, I) )

2 -A(I, 4) * (A(3,1) *A(4,2) -A (3,2) *A (4, i) )

B(3,3)- +A(I, i)* (A (2,2)*A(4,4)-A (2,4)*A(4, 2) )

1 -A(I, 2) * (A (2, I) *A(4,4) -A (2,4) *A (4, I) )

2 +A(I, 4)* (A (2, I)*A(4, 2)-A (2,2)*A(4, i) )

B(3, 4)- -A(I, I) * (A (2,2) *A(3, 4) -A (2,4) *A (3, 2) )

1 +A(I, 2)* (A(2, I)*A(3, 4)-A (2,4)*A(3, i) )

2 -A(1,4) * (A(2, I) *A(3, 2) -A(2,2)*A(3, i) )

B(4, I)- -A (2, I) * (A (3, 2) *A (4,3) -A (3,3) *A (4, 2) )

1 +A (2,2) * (A(3, I)*A(4,3)-A(3, 3) *A(4, I) )

2 -A(2,3)* (A(3, I) *A(4,2)-A(3,2)*A(4, 1) )

B(4,2)- +A (1, I) * (A (3, 2) *A (4,3) -A (3,3) *A(4,2) )
1 -A (I, 2)* (A(3, I)*A(4,3)-A(3, 3)*A(4, I) )

2 +A (i, 3)* (A (3, I)*A(4,2)-A(3, 2)*A(4, i) }

B(4,3)- -A (I, I) * (A (2, 2) *A (4,3)-A (2, 3)*A(4,2) )

1 +A (I, 2) * (A (2, I) *A(4,3)-A (2,3) *A(4, I} )
2 -A(I, 3)* (A (2, I)*A(4,2)-A (2,2) *A(4, i))

B(4,4)- +A (I, i) * (A (2,2)*A(3, 3) -A (2, 3) *A (3, 2) )

1 -A(I, 2)* (A(2, I)*A(3, 3)-A(2,3)*A(3, 1) )

2 +A(I,3)* (A(2, I)*A(3, 2)-A(2,2)*A(3, 1) )

DO 1090 I-i,4

DO 1090 J-1,4

1090 B(I,J)-B (I, J)/D

DO 1100 I-1,4
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1100

1110

1200

1210

1300

1400

1450

1500

1550

1600
2000

C---o_.

C

C,e,ll t ,J'

C 'l1,11 '11,t

Grill _t

C
C
C

C
C
C

DO 1100 J'1,4

X(I,J)'0.0

Y(I,J)-0.0

DO 1110 I-1,2

DO 1110 J-1,2

Z (Z, J)-A(I+4, J+4)

DO 1200 I-1,4
DO 1200 J-1,2

DO 1200 K-1,4

X(I,J)-X (I, J) +B (I,K) *A(K, J+4)
DO 1210 I-1,2

DO 1210 J-1,4

DO 1210 K-1,4

Y (I, J)-Y(I, J} +A(I÷4,K}*B (K, J)

DO 1300 I-1,2
DO 1300 J-I,2

DO 1300 K-1,4

Z (I, J)-Z (I, J)-Y (I,K)*A(K, J+4)

D-Z (1,1) *Z (2, 2) -Z (1,2) *Z (2, 1)
IF (D.EQ.0.0) D'I.0

DO 1400 I'l,6
DO 1400 J'1,6

A(I,J)'0.0
A(5, 5)-Z (2,2)/D
A(5, 6)--Z (1,2)/D
A (6, 5)--Z (2,1)/D
A(6,6)-Z(1, 1)/D
DO 1450 I'1,4

DO 1450 J'l,4

A (I, J)'B(I, J)

DO 1500 I'I,4

DO 1500 J'1,2

DO 1500 K'1,2

A(I, J÷4)'A(I, J+4) -X (I, K) *A (K+4, J+4)

DO 1550 I-1,2

DO 1550 J'I,4

DO 1550 K'1,2

A (I÷4, J)'A (I+4, J) -A (I+4, K+4 )*Y (K, J)
DO 1600 I'1,4

DO 1600 J'1,4

DO 1600 K'1,2

A (I, J)'A (I, J) -A (I, K+4) *Y (K, J)

CONTINUE
RETURN

END

SUBROUTINE MATINV (A, NMAX,N,B,MAX,M, DETERM)

IMPLICIT REAL*8 (A-H,O-Z)

STANDARD MATRIX INVERSION SUBPROGRAM

DIMENSION A(NMAX, NMAX),B(NMAX,MAX)

DIMENSION IPIVOT(300),INDEX(300,2),PIVOT(300}

INITIALIZATION

I0 DETERM - 1.0

15 DO 20 J'I,N

20 ZPIVOT(J) " 0

30 DO 550 I'I,N

SEARCH FOR THE PIVOT ELEMENT

40 AMAX - 0.0

45 DO 105 J'I,N

50 IF (IPIVOT(J) .EQ. i) GOTO 105

F38



C
C
C

C
C
C

C

C
C

C
C
C

60 DO 100 K'I,N

70 IF (IPIVOT(K) - 1)80,100,740

80 IF (ABS(AMAX) .GE. ABS(A(J,K))) GOTO 100

85 IROW " J

90 ICOLUM - K

95 AMAX - A(J,K)
I00 CONTINUE

105 CONTINUE

110 IPIVOT(ICOLOM) - IPIVOT(ICOLUM) + i

INTERCHANGE ROWS TO PUT ELEMENT ON DIAGONAL

130 IF (IROW .E0. ICOLUM) GOTO 260

140 DETERM - -DETERM

150 DO 200 L-1,N

160 SWAP - A{IROW, L)

170 A (IROW, L) - A (ICOLUH, L)

200 A (ICOLUM, L) - SWAP
205 IF (M .LE. 0) GOTO 260

210 DO 250 L-I,M

220 SWAP - B(IROW,L)

230 B(IROW, L) - B(ICOLUM, L}

250 B (ICOLUM, L) - SWAP

260 INDEX(I,1) - IROW

270 INDEX(I,2) - ICOLUM

310 PIVOT(I) - A(ICOLUM, ICOLUM)

320 DETERM - DETERM*PIVOT(1)

DIVIDE PI_OT BY PIVOT ELEMENT

330 A(ICOLUM, ICOLUM) - 1.0

340 DO 350 L-I,N

350 A(ICOLUM, L) - A(ICOLUM, L)/PIVOT(I)

355 IF (M .LE. 0) GOTO 380

360 DO 370 L-I,M

370 B (ICOLUM, L) - B (ICOLUM, L)/PIVOT (I)

REDUCE NON-PIVOT ROWS

380 DO 550 LI-1,N

390 IF (L1 .EQ. ICOLUM) GOTO 550

400 T - A(LI, ICOLUM)

420 A(LI,ICOLUM) - 0.0

430 DO 450 L-1,N
450 A(LI,L) - A(LI,L) - A(ICOLUM, L)*T

455 IF (M .LE. 0) GOTO 550

460 DO 500 L-I,M

500 B(L1,L) - 8(LI,L) - B(ICOLUM, L)*T
550 CONTINUE

INTERCHANGE COLUMNS

600 DO 710 I-I,N
610 L - N + 1 - I

620 IF (INDEX(L,I) .E0. INDEX(L, 2))

630 JROW - INDEX(L, 1)
640 JCOLUM - INDEX(L, 2)

650 DO 705 K-1, N

660 SWAP - A(K, JROW)

670 A (K, JROW) - A (K, JCOLUM)

700 A{K,JCOLUM) - SWAP
705 CONTINUE

7 I0 CONTINUE

740 RETURN
END

GOTO 710
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C
C GET
C

SUBROUTINE TRANSI {At, A2, T)

THE STRAIN TRANSFORMATION MATRIX |T)

DIMENSION T (6, 6)

Sl"S IND (A1)

S2"SIND (A2)

CI'COSD (AI)

C2"COSD (A2 }

SIS'SZ*SI

$2S'S2"$2
CIS'C1"C1

C2S-C2tC2

SCl"SI*C1
SC2"$2"C2

T (1, 1) "CIS*C2S

T (2, l )"$1S*C2S

T(3, 1)'$2S

T(4, I)'$I*SC2"2.0

T(5, I)"CI*SC2"2.0

T (6, 1) "SCI*C2S'2.0

T(1,2)'$IS

T(2,2)'CIS

T(3,2)'0.0
T|4,2)-0.0

T(5,2)'0.0
T (6, 2)'-SCI'2.0

T (I, 3 )"CIS*$2S

T (2, 3)'SIS*$2S

T (3, 3)'C2S

T (4, 3) "-$I*SC2"2.0

T (5, 3) "-CI*SC2"2.0

T (6, 3) "SCI*$2S'2.0

_(I, 4)'SCI*$2

T (2,4)--T (1, 4)

T(3,4)-0.0

T (4, 4) "CI*C2

T (5, 4 )"-Si*C2

T (6, 4)-- (ClS-SIS) *S2
T (I, 5) "-CIS*SC2

T(2, 5)'-$1S*SC2

T (3, 5) "SC2

T (4,5) "$1" (C2S-$2S)

T (5, 5) "CI* (C2S-$2S)
T (6,5) "-2.0*SCI*SC2

T (i, 6) "-SCI*C2

T (2, 6) "SCI*C2

T(3s6)'0.0

T(4,6)'CI*$2

T(5, G)'-SI*S2

T(6,6)" (CIS-SIS) *C2
RETURN

END

Cq--t----_m--.

SUBROUTINE TRANS2 (AI, A2, T)
C

C GET THE INVERSE STRAIN TRANSFORMATION MATRIX (T}
C

DIMENSION T (6, 6)

S l-S IND (A1)

S2-SIND (A2)

C1-COSD (At)
C2-COSD (A2)
SIS-SI*SI

S2S-$2"$2

CIS-CI*Cl
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1113

C2S-C2"C2
SCl-SI*C1
SC2..$2"C2
T (1, 1 ) -ClS*C2 S
T (1,2)-SIS*C2S
T(1,3)-S2S
T (1,4)-S1"SC2
T (1,5) "C1"SC2
T (1, 6)"SC1"C2S
T(2, 1)'$IS
T(2,2)'CIS
T(2,3)'0.0
T(2,4)'0.0
T(2,5)'0.0
T(2, 6)'-SCI
T (3, 1)'CIS*$2S
T (3,2)'$1S*$2S
T (3,3) "C2S
T (3, 4) "-S1"SC2
T (3, 5)'-C1"SC2
T (3, 6)"SC1"$2S
T (4,1)'2.0"SC1"$2
T (4,2) "-T (4,1)
T(4,3)'0.0
T (4,4)'CI*C2
T (4,5) "-$1"C2
T (4,6) "- (ClS-SIS) *$2
T (5, I)"-2.0*CIS*SC2
T (5, 2)"-2.0"$1S*SC2
T (5, 3)"2.0*SC2
T (5, 4)"SI* (C2S-$2S)
T (5, 5)"CI* (C2S-$2S)
T (5, 6)"-2.0"SC1"SC2
T (6,I)"-2 •0"SC1"C2
T (6, 2)"2.0*SCI*C2
T(6,3)'0.0
T(6, 4)'C1"$2
T (6, 5)"-$1"$2
T (6, 6)" (ClS-SIS) *C2
RETURN
END

SUBROUTINE GETSS(MM,MN, PROP,SS)

DIMENSION SS (6, 6),PROP (I_4,i0)
DO 1113 II'1,6
DO 1113 JJ'l,6
SS (II,JJ)'0.0
El'PROP (MN, 1)
E2-PROP (MN, 2)
U1-PROP (MN, 3)
U2-PROP (MN, 4)
G1-PROP (MN, 5)
G2-PROP (HN, 6)
R-UI*UI*E2/E1

D" ( 1.0+U2 ) * (1.0-U2-2.0*R)
SS (1, 1)"El* (I. 0-U2*U2 )/D
SS (1,2)-E2*Ul* (1.0+U2)/D
SS (1, 3) "SS (1, 2)
SS (2, 1)'SS (1,2)
SS(2,2)'E2" (1.0-R)/D
SS(2, 3)-E2" (U2+R)/D
SS (3, 1) "SS (1, 3)
SS (3, 2) "SS (2, 3)
SS(3, 3)=SS(2,2)
SS(4,4)-G2
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SS(5, 5)-G1
SS(6, 5)-(;1
RETURN
END

C

100

SUBROUTINE GETB (AA, BB, CC, X, Y,Z,BM}

DIMENSION BM (6,24)
DO 100 I-1,6
DO 100 J-1,24
BM(I, J)-0.0
Xl-- (0.125/AA) * (1.0-Y/BE) * (i.0-Z/CC)
YI-- (0.125/BB) * (1.0-X/AA) * (1.0-Z/CC)

Z1-- (0. 125/CC) * (1.0-X/AA) * (I. 0-Y/BB)
X2-- (0.125/AA) * (1.0-YIBB) * (I.0+Z/CC)
Y2-- (0.125/BB) * (I.0-X/AA) * (i.0+Z/CC)
Z2-+ (0. 125/CC) * (1.0-X/AA) * (I.0-Y/BB)
X3-- (0. 125/AA) * (1.0+Y/BE) * (I.0-Z/CO)
Y3-+ (0. 125/BB) * (1.0-X/AA) * (1.0-Z/CC)
Z3-- (0.125/CC) * (1.0-X/AA) * (1.0+Y/BB)
X4-- (0. 125/AA) * (1.0+Y/BE) * (1.0+Z/CC)
Y4-+ (0. 125/BB) * (1. O-X/Ak) * (1.0+Z/CC)
Z4-+ (0.125/CC) * (1.0-X/AA) * (1.0+Y/BB)
XE-+ (0.125/AA) * (1.0-Y/BE) * (1.0-Z/CC)
¥5-- (0.125/BB) * ( 1. O+X/AA) * (1.0-Z/CC)
Z5-- (0. 125/CC) * (1. O+X/AA) * (1.0-Y/BB)
XB-+ (0. 125/AA) * (1.0-Y/EB) * (1.0+Z/CC)
Y6-- (0. 125/BB) * (1.0+X/AA) * (1.0+Z/CC)
ZB-+ (0. 125/CC) * (1. O+X/AA) * (1.0-Y/BB)
XT-+ (0. 125/AA) * (1.0+Y/BE) * (1.0-Z/CC)
Y7-+ (0. 125/DB) * (1. O+X/AA) * (1.0-Z/CC)
Z?-- (0. 125/CC) * (1.0+X/AA) * (1.0+Y/BB)
X8-+ (0. 125/AA) * (1.0+Y/BE) * (1.0+Z/CC)
¥8-+ (0. 125/BB) * (1. O+X/AA) * (1.0+Z/CC)
ZS-+ (0. 125/CC) * (1. O+X/AA) * (1.0+Y/BE)
BM(1, 1)-X1
BM(2, 2) -¥1
BM(3, 3)'ZI
BM(I, 4)"X2
BM(2, 5)'¥2
BM(3, 6)'Z2
EM(1, 7)"X3
BM(2, 8)'¥3
BM(3, 9) -Z3
BM(1, 10)-X4
EH(2, 11)-¥4
EM(3, 12)'Z4
BM(I, 13)'X5
EM(2, 14)-Y5
BM(3, 15)-Z5

BM(I, 16)-X6
BM(2, 17)-Y6
BM(3, 18)-Z6
BH(I, 19) -X"/
BM(2, 20)'Y?
BH(3, 21)'Z'/
BH(1, 22)'X8
BM(2, 23)'¥8
BH(3, 24)'Z8
all(4,1) -¥1
BH (5, 2)-Zl
BM(6, 3)-Xl
19M(4, 4)'¥2
BM(5, 5)-Z2
BM(6, 6)-X2

BM(4, ?)-Y3
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BM(5, 8) "Z3

BM(6, 9) "X3
BM(4, 10)"Y4

BM(5, 11)'Z4

BM(6, 12)'X4

BM(4, 13) "Y5

BM(5, 14)'Z5

EH(6, 15)'X5

BM(4, 16)'¥6

BM(5, 17)'Z6

DM(6, 18)'X6

BM(4, 19)'Y7

BM(5, 20)'Z7
BM (6, 21 )"X7

BM (4, 22)'¥8

BM (5, 23) "Z8

BM (6, 24)'X8

BM(6, I)'ZI
EH(4,2) -X1
BM(5, 3)'YI

BH(6, 4) "Z2

BM(4, 5) -X2
BM(5, 6) -X2
BM(6, 7)-Z3

BM(4, 8) -X3
BM(5, 9) -¥3

BM(6, 10)-Z4

BM(4, 11)-X4
BM(5, 12)-¥4

BH(6, 13)-Z5

BM(4, 14)-X5

BM(5, 15)-Y5

BM(6, 16)-Z6

BM(4, 17)-X6
BM(5, 18)-Y6

BM(6, 19)-Z7

BM(4, 20)-X7

BM(5, 21)-¥7

BM(6, 22)-Z8

BM(4,23)-X8

BM(5, 24)'Y8
RETURN

END

SUBROUTINE GETMS (MM, MN, PROP, S, SAFE}
C

DIMENSION S(6),PROP(MM, 10}

SL-S (1)

IF (SL. GE. 0.0) SLL-PROP (MN, 7)

IF (SL. LT. 0.0) SLL-PROP (MN, 8)
SL-ABS (SL)
SLL-ABS (SLL)

IF (SLL. EQ. 0.0) SLL-I. 0

SAFE- (SLL-SL)/SLL
D-(S(2)+S (3))/2.0
B-(S(2)-S(3)}/2.0
B-ASS (S)
B-S(4)/2.0

H-ABS (H)
R-B*B+H*H

_-SQRT (R)
MAX-D+R
MIN-R-D

$F(MAX.LE.0.0) GO TO 100

SLL-PROP (MN, 9)

SLL-ABS (SLL)
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C_

IF (SLL.EO.0.0) SLL-1.0
SAF" (SLL-MAX)/SLL

IF (SAF • LT • S_"E) S_"E- SAF
100 CONTINUE

IF(MIN.GE.0.0) GO TO 200
SLL-PROP ()IN,i0)

SLL-ABS (SLL)

IF (SLL.EQ.0.0) SLL-I.0

SAF- (SLL+MIN)/SLL

IF (SAF. LT. SAFE) SAFE-SAF

200 CONTINUE

RETURN

END

7700

SUBROUTINE GETDD(SSSZ,SSS2,VI,V2,DDI,DD2)

DIMENSION SSSI(6,6),SSS2(6,6),DDZ(6,6),DD2(6,6)

DIMENSION DD(6,6),CB(6,6)

DO 7700 II-1,6

DO 7700 JJ-1,6

CB (II, JJ) -SSS2 (II, JJ) -SSSI (II, JJ}

DD(II, JJ)-0.0
DDI (II, JJ)-0.0

DD2 (IX, JJ)-0.0

DD (I, Z)-SSSI (I, 1)

DD (I, 2)--SSS2 (I, i)

DD(I, 3)-SSSl (I, 5)

DD (I, 4)--SSS2 (1, 5)

DD(1, 5)-SSSI (1, 6)

DD(I, 6)--SSS2 (I, 6)

DD(2, 1)-V1

DD (2, 2)-V2

DD (3, 1)-SSS1 (5, 1)
DD (3, 2) --SSS2 (5, I)

DD(3, 3)-SSS1 (5, 5)
DD(3, 4)--SSS2 (5, 5)
DD(3, 5)-SSS1(5, 6)
DD(3, 6)--SSS2 (5, 6)
DD (4, 3) -V1
DD(4, 4) -V2

.DD(5, 1)-SSS1 (6, 1)
DD(5, 2)--SSS2 (6, 1)
DD(5, 3)-SSS1 (6, 5)

DD (5, 4)--SSS2 (6, 5)
DD (5, 5)-SSS1(6, 6)

DD(5, 6)--SSS2 (6,6)

00(6, 5)-Vl
DD(6, 6) -V2
CALL INV (DD)

DDI (I, I)-DD (1, 2)

DDI (I, 5)-DD (I, 4)

DDI (I, 6)-DD (I, 6)

DDI (I, 2)-DD (1, I)*CB(I, 2)+DD (I,3)*CB(5,2)+DD (I,5)*CB(6,2)
DDI (I, 3)-DD(1, I)*CB(1,3)+DD (1,3)*CB(5, 3)+DD(I,5)*CB(6,3)

DDI (1,4)-DD (I, I) *CB (I, 4 )+DD (1,3) *CB (5, 4 )+DD (I, S) *CB (6, 4 )

DDI (2, 2)-I.0
DDI (3, 3)-I.0

DDI (4,4)-I.0

DDI (5, I )-DD (3,2)

DDI (5, 5)-DD (3, 4)

DDI (5, 6) -DD (3, 6)

DDI (5, 2 )-DD (3, I) *CB (i, 2) +DD (3, 3) *CB (5, 2) +DD (3,5) *CB (6, 2)
DDI (5, 3) -DD (3, 1) *CB (i, 3) +DD (3,3) *CB (5, 3) +DD (3, 5) *CB (6, 3)

DD1 (5, 4 )-DD (3, 1) *CB (i, 4) +DD (3,3) *CB (5, 4 )+DD (3, 5) *CB (6, 4)

DDI (6, I)-DD (5, 2)

DD1 (6, 5)-DD (5, 4)
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DD1 (6, 6) -DD (5, 6)
DD1 (6, 2)-DD (5, 1) *CB (1,2) +DD (5, 3) *CB (5, 2) +DD (5, 5) *C_ (G, 2)
DD1 (.6, 3) -DD (5,1) *CB (1, 3 ) +DD (5, 3) *Ca (5,3) +DD (5, 5) *CB (6,3)
DD1 (6, 4) -DD (5, 1) *CB (1, 4) +DD (5,3) *CB (5, 4) +DD (5, 5) *C_ (6, 4)
DD2 (1, 1) -DD (2,2)
DD2 (1,5) "DD (2, 4)
DD2 (1,6) "DD (2, 6)
DD2 (1,2)"DD (2,1) *CB (1, 2) +DD (2,3) *C! (5, 2)+DD (2, 5) *Ca (6,2)
DD2 (1, 3) "DD (2, 1) *CB (1, 3) +DD (2,3) *CB (5,3) +DD (2, 5) *CB (6, 3)
DD2 (1, 4 ) "DD (2, 1) *CB (1, 4 ) +DD (2,3) *CB (5, 4) +DD (2,5) *CB (6,4)
DD2 (2,2)'1.0
DD2 (3,3)'1.0
DD2 (4,4)'1.0
DD2 (5, 1)"DD (4
DD2 (5, 5)-DD (4
DD2 (5, 6) -DD (4
DD2 (5, 2)-DD (4
DD2 (5, 3) -DD (4
DD2 (5, 4 ) -DD (4
DD2 (6, 1)-DD (6
DD2 (6, 5) -DD (6
DD2 (6, 6) -DD (6
DD2 (6, 2) -DD (6
DD2 (6, 3) -DD (6
DD2 (6, 4 ) -DD (6
RETURN
END

,2)
.4)
6)
1) *CB (1,2) +DD (4,3) "CB (5, 2) +DD (4,5) *CB (6, 2)
1) *CB (1,3) +DD (4,3) *CB (5, 3)+DD (4,5) *CB (6, 3)
1) *'CB (1,4) +DD (4,3) iCE (5,4) +DD (4,5) *CB (6, 4)

2)

6)
,I)*CB (I, 2)+DD(6, 3)*CB (5,2)+DD(6, 5) *Ca (6, 2)
1) *CB (1,3) +DD (6, 3) *Ca (5, 3)+DD (6, 5) *CB (G, 3)
1) *CB (1,4) +DD (6, 3) *ca (5, 4) +DD (6, 5) *CB (G, 4)
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